>
Mathematics
List of top Mathematics Questions
The function $f\left(x\right) = \sec \left[\log\left(x+\sqrt{1+x^{2}}\right)\right]$ is
WBJEE - 2010
WBJEE
Mathematics
Functions
The value of $\frac{\log_{3} 5 \times \log_{25} 27 \times \log_{49} 7}{\log_{81} 3}$ is
WBJEE - 2010
WBJEE
Mathematics
limits of trigonometric functions
If $f(5)=7$ and $f^{'}(5)=7$ then $\displaystyle\lim _{x \rightarrow 5} \frac{x f(5)-5 f(x)}{x-5}$ is given by
WBJEE - 2010
WBJEE
Mathematics
limits and derivatives
The general solution of the different equation $100\frac{d^{2}y}{dx^{2}}-20 \frac{dy}{dx}+y = 0 $ is
WBJEE - 2010
WBJEE
Mathematics
Differential equations
The degree of the differential equation $x = 1+\left(\frac{dy}{dx}\right)+\frac{1}{2!}\left(\frac{dy}{dx}\right)^{2}+\frac{1}{3!}\left(\frac{dy}{dx}\right)^{3} + .........$
WBJEE - 2010
WBJEE
Mathematics
Differential equations
$\int\sqrt{1+\cos\,x}\,dx$ is equal to
WBJEE - 2010
WBJEE
Mathematics
Integrals of Some Particular Functions
For what values of m can the expression $2x^2 + mxy + 3y^2 - 5y - 2$ be expressed as the product of two linear factors
VITEEE - 2010
VITEEE
Mathematics
Quadratic Equations
The value of $\frac{2}{3!}+\frac{4}{5!}+\frac{6}{7!}+........$ is
WBJEE - 2010
WBJEE
Mathematics
Sequence and series
If
$y =tan ^{-1} \sqrt {x^2-1}$
then the ratio
$\frac {d^2y}{dx^2}: \frac {dy}{dx}$
=_________
KCET - 2010
KCET
Mathematics
Continuity and differentiability
$ \displaystyle\lim _{n \rightarrow \infty} n \sin \frac{2 \pi}{3 n} \cdot \cos \frac{2 \pi}{3 n}$
is
KCET - 2010
KCET
Mathematics
limits and derivatives
Which of the following is NOT true?
KCET - 2010
KCET
Mathematics
mathematical reasoning
The sides of a triangle are
$6+\sqrt {12} , \sqrt {48} $
and
$\sqrt {24}$
. The tangent of the smallest angle of the triangle is
KCET - 2010
KCET
Mathematics
Trigonometric Functions
The locus of the point of intersection of the tangents drawn at the ends of a focal chord of the parabola
$x^2=-8y$
is _______
KCET - 2010
KCET
Mathematics
Conic sections
If $z$ satisfies the equation $|z|-z=1+2 i$, then $z$ is equal to
VITEEE - 2010
VITEEE
Mathematics
Complex numbers
If $z=\frac{1-i \sqrt{3}}{1+i \sqrt{3}}$, then $\arg (z)$ is
VITEEE - 2010
VITEEE
Mathematics
argand plane
The points
$(1, 0), (0, 1), (0, 0) $
and
$ (2k, 3k),k \neq 0$
are concyclic if
$k$
= _____
KCET - 2010
KCET
Mathematics
Conic sections
The area bounded by the curve $ y= \begin{cases} x^2,x<0 & \quad\\ x,x \geq 0 & \quad \\ \end{cases}
$ and the line $
y = 4$ is
KCET - 2010
KCET
Mathematics
Area between Two Curves
The eccentric angle of the point
$(2,\sqrt{3})$
lying on
$\frac {x^2}{16}+\frac{y^2}{4}-1$
is _________
KCET - 2010
KCET
Mathematics
Ellipse
If
$x\neq n \pi ,\, x \neq\,(2n+1)\frac {\pi}{2}.n\in Z, $
then
$\frac {Sin^{-1}(Cos x) + Cos^{-1}(Sin x)}{Tan ^{-1}(Cot x)+ Cot^{-1}(Tan x)} $
=
KCET - 2010
KCET
Mathematics
Inverse Trigonometric Functions
In
$\Delta ABC$
, if
$a =2, B = \tan ^{-1} \frac {1}{2}$
and
$C = \tan ^{-1}\frac{1}{3}$
, then
$(A,b)$
=
KCET - 2010
KCET
Mathematics
Inverse Trigonometric Functions
The condition for the line
$y = mx +c$
to be a normal to the parabola
$y = 4ax$
is _______
KCET - 2010
KCET
Mathematics
Conic sections
The set of real values of x for which
$ f(x) = \frac {x}{log\, x}$
increasing, is
KCET - 2010
KCET
Mathematics
Application of derivatives
If $y'' - 3y' + 2y = 0$ where $y(0) = 1$, $y'(0) = 0$, then the value of $y$ at $x \,= log_e \,2$ is
WBJEE - 2010
WBJEE
Mathematics
Differential equations
$ \int e^{xloga }e^{x} dx $
is equal to
AMUEEE - 2010
AMUEEE
Mathematics
Integrals of Some Particular Functions
The slopes of the tangent and normal at
$(0, 1)$
for the curve
$y = \sin x + e^x$
are respectively
COMEDK UGET - 2010
COMEDK UGET
Mathematics
Application of derivatives
Prev
1
...
646
647
648
649
650
...
922
Next