To solve the problem, we are given:
1. Understanding $ \tan C $:
In a right triangle, $ \tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} $
So, $ \tan C = \frac{AB}{BC} = \frac{5}{12} $
2. Using Pythagoras Theorem:
Let the sides be:
- Opposite to $C$ (AB) = 5 units
- Adjacent to $C$ (BC) = 12 units
Then by Pythagoras theorem:
$ \text{Hypotenuse}^2 = AB^2 + BC^2 = 5^2 + 12^2 = 25 + 144 = 169 $
$ \text{Hypotenuse} = \sqrt{169} = 13 $
Final Answer:
The length of the hypotenuse is $ {13} $.