>
Mathematics
List of top Mathematics Questions
$\int\sqrt{1+\cos\,x}\,dx$ is equal to
WBJEE - 2010
WBJEE
Mathematics
Integrals of Some Particular Functions
For what values of m can the expression $2x^2 + mxy + 3y^2 - 5y - 2$ be expressed as the product of two linear factors
VITEEE - 2010
VITEEE
Mathematics
Quadratic Equations
The value of $\frac{2}{3!}+\frac{4}{5!}+\frac{6}{7!}+........$ is
WBJEE - 2010
WBJEE
Mathematics
Sequence and series
If
$y =tan ^{-1} \sqrt {x^2-1}$
then the ratio
$\frac {d^2y}{dx^2}: \frac {dy}{dx}$
=_________
KCET - 2010
KCET
Mathematics
Continuity and differentiability
$ \displaystyle\lim _{n \rightarrow \infty} n \sin \frac{2 \pi}{3 n} \cdot \cos \frac{2 \pi}{3 n}$
is
KCET - 2010
KCET
Mathematics
limits and derivatives
Which of the following is NOT true?
KCET - 2010
KCET
Mathematics
mathematical reasoning
The sides of a triangle are
$6+\sqrt {12} , \sqrt {48} $
and
$\sqrt {24}$
. The tangent of the smallest angle of the triangle is
KCET - 2010
KCET
Mathematics
Trigonometric Functions
The locus of the point of intersection of the tangents drawn at the ends of a focal chord of the parabola
$x^2=-8y$
is _______
KCET - 2010
KCET
Mathematics
Conic sections
If $z$ satisfies the equation $|z|-z=1+2 i$, then $z$ is equal to
VITEEE - 2010
VITEEE
Mathematics
Complex numbers
If $z=\frac{1-i \sqrt{3}}{1+i \sqrt{3}}$, then $\arg (z)$ is
VITEEE - 2010
VITEEE
Mathematics
argand plane
The points
$(1, 0), (0, 1), (0, 0) $
and
$ (2k, 3k),k \neq 0$
are concyclic if
$k$
= _____
KCET - 2010
KCET
Mathematics
Conic sections
The area bounded by the curve $ y= \begin{cases} x^2,x<0 & \quad\\ x,x \geq 0 & \quad \\ \end{cases}
$ and the line $
y = 4$ is
KCET - 2010
KCET
Mathematics
Area between Two Curves
The eccentric angle of the point
$(2,\sqrt{3})$
lying on
$\frac {x^2}{16}+\frac{y^2}{4}-1$
is _________
KCET - 2010
KCET
Mathematics
Ellipse
If
$x\neq n \pi ,\, x \neq\,(2n+1)\frac {\pi}{2}.n\in Z, $
then
$\frac {Sin^{-1}(Cos x) + Cos^{-1}(Sin x)}{Tan ^{-1}(Cot x)+ Cot^{-1}(Tan x)} $
=
KCET - 2010
KCET
Mathematics
Inverse Trigonometric Functions
In
$\Delta ABC$
, if
$a =2, B = \tan ^{-1} \frac {1}{2}$
and
$C = \tan ^{-1}\frac{1}{3}$
, then
$(A,b)$
=
KCET - 2010
KCET
Mathematics
Inverse Trigonometric Functions
The condition for the line
$y = mx +c$
to be a normal to the parabola
$y = 4ax$
is _______
KCET - 2010
KCET
Mathematics
Conic sections
The set of real values of x for which
$ f(x) = \frac {x}{log\, x}$
increasing, is
KCET - 2010
KCET
Mathematics
Application of derivatives
If $y'' - 3y' + 2y = 0$ where $y(0) = 1$, $y'(0) = 0$, then the value of $y$ at $x \,= log_e \,2$ is
WBJEE - 2010
WBJEE
Mathematics
Differential equations
$ \int e^{xloga }e^{x} dx $
is equal to
AMUEEE - 2010
AMUEEE
Mathematics
Integrals of Some Particular Functions
The slopes of the tangent and normal at
$(0, 1)$
for the curve
$y = \sin x + e^x$
are respectively
COMEDK UGET - 2010
COMEDK UGET
Mathematics
Application of derivatives
The complex number
$ z = \begin{vmatrix}2&3+i&-3\\ 3-i&0&-1+i\\ -3&-1-i&4\end{vmatrix} $
is equal to
AMUEEE - 2010
AMUEEE
Mathematics
Determinants
Let
$ f : R $
- {
$ \frac {5}{4} $
}
$ \rightarrow R $
be a function defined as
$ f(x) = \frac{5x}{4x+5} $
. The inverse of
$ f $
is the map
$ g : Range\,f\,\rightarrow R $
- {
$ \frac {5}{4} $
} given by
AMUEEE - 2010
AMUEEE
Mathematics
Functions
Let
$ * $
be a binary operation on the set
$ Q $
of rational numbers defined by
$ a*b $
=
$ \frac{ab}{4} $
. The identity with respect to this operation is
AMUEEE - 2010
AMUEEE
Mathematics
Functions
For the equations
$ x + 2y + 3z = 1 $
,
$ 2x + y + 3z = 2 $
,
$ 5x + 5y + 9z = 4 $
AMUEEE - 2010
AMUEEE
Mathematics
Determinants
The number of
$3 \times 3$
matrices
$A$
whose entries are either
$0$
or
$1$
and for which the system A $\begin {bmatrix} x \\ y \\ z \end {bmatrix}-\begin {bmatrix} 1 \\ 0 \\ 0 \end {bmatrix}$ has exactly two distinct solutions, is
JEE Advanced - 2010
JEE Advanced
Mathematics
Determinants
Prev
1
...
648
649
650
651
652
...
924
Next