To solve the problem, we are given:
We are to find \( \angle B \).
1. Determine Angle A:
From \( \cos A = \frac{1}{2} \), we know:
\[
A = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}
\]
2. Use the Value of \( \tan(A - B) \):
Given \( \tan(A - B) = \frac{1}{\sqrt{3}} \), we recognize that:
\[
\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \Rightarrow A - B = \frac{\pi}{6}
\]
3. Solve for \( B \):
\[
A - B = \frac{\pi}{6} \Rightarrow \frac{\pi}{3} - B = \frac{\pi}{6}
\]
\[
B = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}
\]
Final Answer:
The value of \( \angle B \) is \( \frac{\pi}{6} \).