To solve the problem, we need to find the value of \( \sin A + \cos B \) given that \( A = 45^\circ \) and \( B = 60^\circ \).
1. Use Standard Trigonometric Values:
We know the standard values:
\( \sin 45^\circ = \frac{1}{\sqrt{2}} \)
\( \cos 60^\circ = \frac{1}{2} \)
2. Substitute the Values:
\[ \sin A + \cos B = \sin 45^\circ + \cos 60^\circ = \frac{1}{\sqrt{2}} + \frac{1}{2} \]
3. Take LCM to Simplify:
To simplify the sum:
\[ \frac{1}{\sqrt{2}} + \frac{1}{2} = \frac{2 + \sqrt{2}}{2\sqrt{2}} \]
Final Answer:
The value of \( \sin A + \cos B \) is \( \frac{2 + \sqrt{2}}{2\sqrt{2}} \).