Question:

If \(sin(A-B)=\frac 12\) and \(cos(A+B)=\frac 12\), then \(∠A, ∠B\) ?

Updated On: Apr 17, 2025
  • 45°, 15°
  • 15°, 45°
  • 45°, 30°
  • 30°, 15°
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

To solve the problem, we are given:

  • $ \sin(A - B) = \frac{1}{2} $
  • $ \cos(A + B) = \frac{1}{2} $

1. Using Standard Trigonometric Values:
We know that:

  • $ \sin(30^\circ) = \frac{1}{2} $
  • $ \cos(60^\circ) = \frac{1}{2} $

This implies:

  • $ A - B = 30^\circ $
  • $ A + B = 60^\circ $

 

2. Solving the System of Equations:
Add the two equations:
$ (A - B) + (A + B) = 30^\circ + 60^\circ $
$ 2A = 90^\circ \Rightarrow A = 45^\circ $

Now substitute $A = 45^\circ$ into $A - B = 30^\circ$:
$ 45^\circ - B = 30^\circ \Rightarrow B = 15^\circ $

Final Answer:
$ \angle A = 45^\circ, \angle B = 15^\circ \Rightarrow {45^\circ, 15^\circ} $

Was this answer helpful?
1
0