To solve the problem, we need to find the sum of the roots of the quadratic equation \( 3x^2 - 7x + 11 = 0 \).
1. Understanding the Standard Form:
A quadratic equation in the form \( ax^2 + bx + c = 0 \) has the sum of its roots given by the formula:
\( \text{Sum of roots} = -\frac{b}{a} \)
2. Identify Coefficients:
From the given equation \( 3x^2 - 7x + 11 = 0 \), we identify:
\( a = 3, \quad b = -7 \)
3. Applying the Formula:
Substitute the values of \( a \) and \( b \) into the sum formula:
\( \text{Sum of roots} = -\frac{-7}{3} = \frac{7}{3} \)
Final Answer:
The sum of the roots is \( \frac{7}{3} \).
Match List I with List II :
| List I (Quadratic equations) | List II (Roots) |
|---|---|
| (A) \(12x^2 - 7x + 1 = 0\) | (I) \((-13, -4)\) |
| (B) \(20x^2 - 9x + 1 = 0\) | (II) \(\left(\frac{1}{3}, \frac{1}{4}\right)\) |
| (C) \(x^2 + 17x + 52 = 0\) | (III) \((-4, -\frac{3}{2})\) |
| (D) \(2x^2 + 11x + 12 = 0\) | (IV) \(\left(\frac{1}{5}, \frac{1}{4}\right)\) |
Choose the correct answer from the options given below :