7 boys and 5 girls are to be seated around a circular table such that no two girls sit together is?
The correct answer is (A) :
First, we need to find the total number of ways to seat all 12 people around the circular table, which is (12-1)! = 11! since we can fix one person's position as a reference.
Next, we need to subtract the number of ways that two or more girls sit together. We can approach this by treating the five girls as a block and permuting them first, which can be done in 5! ways.
Then we can insert this block of girls in the 8 spaces between the 7 boys or at the beginning or end of the line of boys, which gives us 9 positions to place the block of girls. Once the block of girls is placed, we can permute the 7 boys in 7! ways. Therefore, the total number of ways that two or more girls sit together is 5! × 9 × 7!
\(\therefore\) the number of ways that no two girls sit together is 11! - 5! × 9 × 7! = 126(5!)2.
The correct answer is (A) : \(126(5!)^2\)
B1 , B2 , B3 , B4 , B5 , B6 , B7
Boys can be seated in (7 – 1)! ways = 6!
Now ways in which no two girls can be seated together is
\(6!\times^7C_5\times5!\)
\(6!\times \frac{7!}{5!2!}\times5!\)
\(=126(5!)^2\)
For the AC circuit shown in the figure, $ R = 100 \, \text{k}\Omega $ and $ C = 100 \, \text{pF} $, and the phase difference between $ V_{\text{in}} $ and $ (V_B - V_A) $ is 90°. The input signal frequency is $ 10^x $ rad/sec, where $ x $ is:
Two parabolas have the same focus $(4, 3)$ and their directrices are the $x$-axis and the $y$-axis, respectively. If these parabolas intersect at the points $A$ and $B$, then $(AB)^2$ is equal to:
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?

Permutation is the method or the act of arranging members of a set into an order or a sequence.
Combination is the method of forming subsets by selecting data from a larger set in a way that the selection order does not matter.