>
Mathematics
List of top Mathematics Questions
\[ f(x) = \begin{cases} \frac{x - |x|}{x}, & x \neq 0 \\[8pt] 2, & x = 0 \end{cases} \]
Which of the following is true for \( f(x) \)
AP EAMCET - 2024
AP EAMCET
Mathematics
Limits
Evaluate \( \int (\log x)^m x^n dx \).
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
If \[ \int \frac{\sqrt[4]{x}}{\sqrt{x} + \sqrt[4]{x}} \, dx = \frac{2}{3} \left[ A \sqrt[4]{x^3} + B \sqrt[4]{x^2} + C \sqrt[4]{x} + D \log \left( 1 + \sqrt[4]{x} \right) \right] + K \] then \( \frac{2}{3} (A + B + C + D) = \)}
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
Evaluate the integral:
\[ \int \sin^{-1} \left( \sqrt{\frac{x - a}{x}} \right) dx \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
Find the domain of \( f(x) \) given:
\[ \int \frac{\sin x \cos x}{\sqrt{\cos^4 x - \sin^4 x}} dx = -\frac{f(x)}{2} + C. \] then domain of f{x) is
AP EAMCET - 2024
AP EAMCET
Mathematics
Functions
If \( \int_0^{2\pi} (\sin^4 x + \cos^4 x) \, dx = K \int_0^\pi \sin^2 x \, dx + L \int_0^\frac{\pi}{2} \cos^2 x \, dx \) and \( K, L \in \mathbb{N} \), then the number of possible ordered pairs \( (K, L) \) is}
AP EAMCET - 2024
AP EAMCET
Mathematics
Definite and indefinite integrals
Among the options given below, from which option a differential equation of order two can be formed?
AP EAMCET - 2024
AP EAMCET
Mathematics
Differential equations
Evaluate the integral:
\[ I = \int \frac{1}{x^m \sqrt[m]{x^m + 1}} dx. \]
TS EAMCET - 2024
TS EAMCET
Mathematics
Integration
A rhombus is inscribed in the region common to the two circles
\[ x^2 + y^2 - 4x - 12 = 0 \]
and
\[ x^2 + y^2 + 4x - 12 = 0. \]
If the line joining the centres of these circles and the common chord of them are the diagonals of this rhombus, then the area (in Sq. units) of the rhombus is:
TS EAMCET - 2024
TS EAMCET
Mathematics
Geometry
If \( m \) is the slope and \( P(\beta, \beta) \) is the midpoint of a chord of contact of the circle
\[ x^2 + y^2 = 125, \]
then the number of values of \( \beta \) such that \( \beta \) and \( m \) are integers is:
\
TS EAMCET - 2024
TS EAMCET
Mathematics
Geometry
The equation of the straight line whose slope is \( -\frac{2}{3} \) and which divides the line segment joining \( (1,2) \) and \( (-3,5) \) in the ratio 4:3 externally is:
TS EAMCET - 2024
TS EAMCET
Mathematics
Geometry
If \( X \sim B(6, p) \) is a binomial variate and
\[ \frac{P(X=4)}{P(X=2)} = \frac{1}{9}, \]
then the value of \( p \) is:
TS EAMCET - 2024
TS EAMCET
Mathematics
Probability
If \( z = x + iy \) satisfies the equation
\[ z^2 + az + a^2 = 0, \quad a \in \mathbb{R}, \]
then:
TS EAMCET - 2024
TS EAMCET
Mathematics
Complex Numbers and Quadratic Equations
If \( \omega \) is the complex cube root of unity and
\[ \left( \frac{a + b\omega + c\omega^2}{c + a\omega + b\omega^2} \right)^k + \left( \frac{a + b\omega + c\omega^2}{b + a\omega^2 + c\omega} \right)^2 = 2, \]
then \( 2k + 1 \) is always:
TS EAMCET - 2024
TS EAMCET
Mathematics
Complex Numbers and Quadratic Equations
The differential equation for which \( ax + by = 1 \) is the general solution is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Differential equations
The solution of the differential equation \( e^x y dx + e^x dy + xdx = 0 \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Differential equations
If \( A = \int_0^{\infty} \frac{1 + x^2}{1 + x^4} dx \) and \( B = \int_0^1 \frac{1 + x^2}{1 + x^4} dx \), then:
AP EAMCET - 2024
AP EAMCET
Mathematics
Definite and indefinite integrals
If the length of the sub-tangent at any point P on a curve is proportional to the abscissa of the point P, then the equation of that curve is (C is an arbitrary constant):
AP EAMCET - 2024
AP EAMCET
Mathematics
Differential equations
If the angle \( \theta \) between the line \( \frac{x + 1}{1} = \frac{y - 1}{2} = \frac{z - 2}{2} \) and the plane \( 2x - y + \sqrt{\lambda}z + 4 = 0 \) is such that \( \sin \theta = \frac{1}{3} \), then the value of \( \lambda \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Geometry
Let \( f(x) = \begin{cases
1 + \frac{2x}{a}, & 0 \le x \le 1
ax, & 1<x \le 2 \end{cases} \). If \( \lim_{x \to 1} f(x) \) exists, then the sum of the cubes of the possible values of \( a \) is: }
AP EAMCET - 2024
AP EAMCET
Mathematics
Limits
If \( y = \sinh^{-1} \left(\frac{1 - x}{1 + x} \right) \), then \( \frac{dy}{dx} \) is given by:
AP EAMCET - 2024
AP EAMCET
Mathematics
Differentiation
If the direction cosines of two lines are given by
\[ l + m + n = 0 \quad \text{and} \quad mn - 2lm - 2nl = 0, \]
then the acute angle between those lines is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Geometry
The area of the quadrilateral formed with the foci of the hyperbola
\[ \frac{x^2}{16} - \frac{y^2}{9} = 1 \]
and its conjugate hyperbola is (in square units):
AP EAMCET - 2024
AP EAMCET
Mathematics
Conic sections
If \( P \) is a point which divides the line segment joining the focus of the parabola \( y^2 = 12x \) and a point on the parabola in the ratio 1:2, then the locus of \( P \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Parabola
Let \( T_1 \) be the tangent drawn at a point \( P(\sqrt{2}, \sqrt{3}) \) on the ellipse \( \frac{x^2}{4} + \frac{y^2}{6} = 1 \). If \( (a, \beta) \) is the point where \( T_1 \) intersects another tangent \( T_2 \) to the ellipse perpendicularly, then \( a^2 + \beta^2 = \):
AP EAMCET - 2024
AP EAMCET
Mathematics
Ellipse
Prev
1
...
392
393
394
395
396
...
1168
Next