Step 1: Differentiate both sides
Using the derivative formula for inverse hyperbolic functions:
\[
\frac{d}{dx} \sinh^{
-1} u = \frac{1}{\sqrt{1 + u^2}} \cdot \frac{du}{dx}.
\]
Let \( u = \frac{1
- x}{1 + x} \), then differentiate:
\[
\frac{du}{dx} = \frac{(1 + x)(
-1)
- (1
- x)(1)}{(1 + x)^2} = \frac{
- (1 + x)
- (1
- x)}{(1 + x)^2}.
\]
\[
= \frac{
-1
- x
- 1 + x}{(1 + x)^2} = \frac{
-2}{(1 + x)^2}.
\]
Step 2: Compute \( \frac{dy}{dx} \)
\[
\frac{dy}{dx} = \frac{1}{\sqrt{1 + u^2}} \cdot \frac{du}{dx}.
\]
Using \( u = \frac{1
- x}{1 + x} \),
\[
1 + u^2 = 1 + \left(\frac{1
- x}{1 + x}\right)^2.
\]
Expanding and simplifying, we get:
\[
\frac{dy}{dx} = \frac{
-\sqrt{2}}{|1 + x| \sqrt{1 + x^2}}.
\]