For \( \lim_{x \to 1} f(x) \) to exist, the left
-hand limit and the right
-hand limit must be equal.
Left
-hand limit:
\[ \lim_{x \to 1^
-} f(x) = \lim_{x \to 1^
-} \left( 1 + \frac{2x}{a} \right) = 1 + \frac{2(1)}{a} = 1 + \frac{2}{a} \]
Right
-hand limit:
\[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (ax) = a(1) = a \]
For the limit to exist, the left
-hand limit must equal the right
-hand limit:
\[ 1 + \frac{2}{a} = a \]
\[ a + 2 = a^2 \]
\[ a^2
- a
- 2 = 0 \]
We can factor the quadratic equation:
\[ (a
- 2)(a + 1) = 0 \]
Thus, the possible values of \( a \) are \( a = 2 \) and \( a =
-1 \).
The sum of the cubes of the possible values of \( a \) is:
\[ 2^3 + (
-1)^3 = 8 + (
-1) = 7 \]
Therefore, the sum of the cubes of the possible values of \( a \) is 7.
Final Answer: (3) 7