We are given the quadratic equation in \( z \):
\[
z^2 + az + a^2 = 0, \quad a \in \mathbb{R}.
\]
Step 1: Solve for \( z \)
Using the quadratic formula:
\[
z = \frac{-a \pm \sqrt{a^2 - 4a^2}}{2}.
\]
\[
z = \frac{-a \pm \sqrt{a^2 (1 - 4)}}{2}.
\]
\[
z = \frac{-a \pm \sqrt{-3a^2}}{2}.
\]
\[
z = \frac{-a \pm i\sqrt{3} |a|}{2}.
\]
Step 2: Compute \( |z| \)
\[
|z| = \sqrt{\left( \frac{-a}{2} \right)^2 + \left( \frac{\sqrt{3} |a|}{2} \right)^2 }.
\]
\[
= \sqrt{\frac{a^2}{4} + \frac{3a^2}{4}}.
\]
\[
= \sqrt{\frac{4a^2}{4}} = \sqrt{a^2}.
\]
\[
= |a|.
\]
Step 3: Conclusion
Thus, we obtain:
\[
|z| = |a|.
\]
The correct answer is:
\[
\boxed{|z| = |a|}.
\]
\bigskip