>
KEAM
>
Mathematics
List of top Mathematics Questions asked in KEAM
The value of
\(\cos^{-1}(\cos(\frac{7\pi}{6}))\)
is equal to
KEAM - 2022
KEAM
Mathematics
Trigonometric Functions
The solutions of the equation
\(cos\theta=2-3sin(\frac{\theta}{2})\ in\ the\ interval\ 0\leq\theta\leq\pi\ are\)
KEAM - 2022
KEAM
Mathematics
Trigonometric Equations
If
\(\theta \isin(-\pi,0)\ and\ cos\theta=\frac{-12}{13}, then\ \sin(\frac{\theta}{2})=\)
KEAM - 2022
KEAM
Mathematics
Trigonometric Functions
The period of the function
\(g(x)=5\cot(\frac{\pi}{3}x+\frac{\pi}{6})+2\)
is equal to
KEAM - 2022
KEAM
Mathematics
Trigonometric Functions
The range of the function f(x) = 2sin(3x) +1 is equal to
KEAM - 2022
KEAM
Mathematics
Trigonometric Functions
If \( \alpha \) and \( \beta \) are two acute angles of a right triangle, then \[ (\sin \alpha + \sin \beta)^2 + (\cos \alpha + \cos \beta)^2 = \]
KEAM - 2022
KEAM
Mathematics
Trigonometric Identities
If
\(\cos\theta=\frac{5}{11}\)
and
\(\tan\theta\lt0\)
, then the value of
\(\sin\theta\)
is equal to
KEAM - 2022
KEAM
Mathematics
Trigonometry
Consider the following statements:
(i) For every positive real number X, x-10 is positive.
(ii) Let n be a natural number. If n
2
is even, then n is even.
(iii) If a natural number is odd, then its square is also odd.
Then
KEAM - 2022
KEAM
Mathematics
mathematical reasoning
The set of all x satisfying the inequality |3x+4| ≤ 7 is
KEAM - 2022
KEAM
Mathematics
inequalities
The solution set of the inequality
\(-2\leq\frac{3x+2}{2}\lt7\)
is
KEAM - 2022
KEAM
Mathematics
linear inequalities
\(\begin{vmatrix} \sin\alpha & \cos(\alpha+\theta) & \cos\alpha \\ \sin\beta & \cos(\beta+\theta) & \cos\beta \\ \sin\gamma & \cos(\gamma+\theta) & \cos\gamma\end{vmatrix}=\)
KEAM - 2022
KEAM
Mathematics
Determinants
If A is non-singular matrix and if
\(A^{-1}=\frac{1}{2}\begin{bmatrix} -10&-4\\2&1\end{bmatrix}\)
, then adj(A)=
KEAM - 2022
KEAM
Mathematics
Matrices
If A=[2 0 6] and
\(B=\begin{bmatrix} 3&\ \ 5\\7&-2\\6&\ \ 6 \end{bmatrix}\)
, then AB=
KEAM - 2022
KEAM
Mathematics
Matrices
The value of x satisfying the equation
\(\begin{vmatrix} x&\ \ 4&\ \ 0\\2&-2&-x\\1&\ \ 1&\ \ 1 \end{vmatrix}=0\)
are
KEAM - 2022
KEAM
Mathematics
Determinants
Let
\(\begin{vmatrix} 2&1&-2\\1&1&-1\\1&0&\ \ 3 \end{vmatrix}\)
and let B=|A|adj(A). Then |B|=
KEAM - 2022
KEAM
Mathematics
Determinants
Let
\(A= \begin{bmatrix} 3&4\\ 1&-2 \end{bmatrix}\)
and let
\(AB= \begin{bmatrix} -5&41\\ 5&-13 \end{bmatrix}\)
. Then |B
T
| =
KEAM - 2022
KEAM
Mathematics
Matrices
If
n
C
5
+
n
C
6
=
51
C
6
, then the value of n is equal to
KEAM - 2022
KEAM
Mathematics
Binomial theorem
Let (3+x)
10
= a
0
+a
1
(1+x)+a
2
(1+x)
2
+..... a
10
(1+x)
10
, where a
1
, a
2
, ... a
10
are constants. Then the value of a
0
+a
1
+a
2
+.... a
10
is equal to
KEAM - 2022
KEAM
Mathematics
Binomial theorem
In the binomial expansion of (x - 2y
2
)
9
, the coefficient of x
6
y
6
is equal to
KEAM - 2022
KEAM
Mathematics
Binomial theorem
The number of subsets containing exactly 4 elements of the set {2, 4, 6, 8, 10, 12, 14, 16, 18) is equal to
KEAM - 2022
KEAM
Mathematics
sets
The number of numbers greater than 6000 that can be formed from the digits 3, 5, 6, 7 and 9 (no digit is repeated in a number) is equal to
KEAM - 2022
KEAM
Mathematics
permutations and combinations
The number of arrangements containing all the seven letter of the word ALRIGHT that begins with LG is
KEAM - 2022
KEAM
Mathematics
permutations and combinations
Let
\(t_n=\frac{1}{n}\displaystyle\sum^{n}_{k=1}\left(\frac{k}{n} \right)^2\)
for n=1,2,3…. Then t
10
is equal to
KEAM - 2022
KEAM
Mathematics
Sequence and series
Let S
n
be the sum of the first n terms of the series a
1
+a
2
+...a
n
+… If S
n
=n
2
+4n, then the n
th
term a
n
is
KEAM - 2022
KEAM
Mathematics
Arithmetic Progression
The 11
th
term of the geometric series
\(\displaystyle\sum^{20}_{r=0}2\times(-2)^r\)
is equal to
KEAM - 2022
KEAM
Mathematics
Sequence and series
Prev
1
...
23
24
25
26
27
...
43
Next