We are given the complex number $z = \frac{(3 + i)(7 - i)}{3 - i}$. To find the magnitude $|z|$, we follow these steps: 1. Simplify the expression for $z$: \[ z = \frac{(3 + i)(7 - i)}{3 - i} \] 2. Multiply the numerator $(3 + i)(7 - i)$: \[ (3 + i)(7 - i) = 3 \cdot 7 - 3 \cdot i + i \cdot 7 - i \cdot i = 21 - 3i + 7i + 1 = 22 + 4i \] 3. Divide by the denominator $(3 - i)$. Multiply both the numerator and denominator by the complex conjugate of the denominator, $3 + i$: \[ \frac{22 + 4i}{3 - i} \cdot \frac{3 + i}{3 + i} = \frac{(22 + 4i)(3 + i)}{(3 - i)(3 + i)} \] 4. Simplify the denominator: \[ (3 - i)(3 + i) = 3^2 - i^2 = 9 + 1 = 10 \] 5. Simplify the numerator: \[ (22 + 4i)(3 + i) = 22 \cdot 3 + 22 \cdot i + 4i \cdot 3 + 4i \cdot i = 66 + 22i + 12i + 4(-1) = 66 + 34i - 4 = 62 + 34i \] 6. Therefore, we have: \[ z = \frac{62 + 34i}{10} = 6.2 + 3.4i \] 7. Find the magnitude of $z$, which is $|z|$: \[ |z| = \sqrt{(6.2)^2 + (3.4)^2} = \sqrt{38.44 + 11.56} = \sqrt{50} \]
The correct option is (C) : \(\sqrt {50}\)
We are given the complex number \(z = \frac{(3+i)(7-i)^2}{3-i}\). We want to find the value of |z|.
We can use the property that \( |z| = \frac{|z_1||z_2|^2}{|z_3|} \), where \(z_1 = 3+i\), \(z_2 = 7-i\), and \(z_3 = 3-i\).
First, let's find the magnitudes:
Now, we can find |z|:
\(|z| = \frac{|3+i||7-i|^2}{|3-i|} = \frac{\sqrt{10} (\sqrt{50})^2}{\sqrt{10}} = \frac{\sqrt{10} (50)}{\sqrt{10}} = 50\)
Therefore, the value of |z| is equal to 50.
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is: