>
KEAM
>
Mathematics
List of top Mathematics Questions asked in KEAM
The area of the plane region bounded by the curve
$ x={{y}^{2}}-2 $
and the line
$ y=-x $
is (in square units)
KEAM
Mathematics
Area between Two Curves
If
$\begin{bmatrix}1&x&1\end{bmatrix} \begin{bmatrix}1&3&2\\ 2&5&1\\ 15&3&2\end{bmatrix}\begin{bmatrix}1\\ 2\\ x\end{bmatrix} = 0 $
, then x can be
KEAM
Mathematics
Transpose of a Matrix
Two distinct numbers
$x$
and
$y$
are chosen from
$1,2,3,4,5$
. The probability that the arithmetic mean of
$x$
and
$y$
is an integer is
KEAM
Mathematics
Conditional Probability
Equation of the plane passing through the intersection of the planes
$ x+y+z=6 $
and
$ 2x+3y+4z+5=0 $
and the point
$(1, 1, 1)$
is
KEAM
Mathematics
Three Dimensional Geometry
If
$a = e^{i \theta}$
, then
$\frac{1 + a}{1-a}$
is equal to
KEAM
Mathematics
complex numbers
A man of
$2\,m$
height walks at a uniform speed of
$6 \,km/h$
away from a lamp post of
$6 \,m$
height. The rate at which the length of his shadow increases is
KEAM
Mathematics
Application of derivatives
If tan
$\frac{\theta}{2}=\frac{1}{2}$
,then the value of sin
$\theta$
is
KEAM
Mathematics
Properties of Inverse Trigonometric Functions
If
$ y={{\sin }^{-1}}\sqrt{1-x}, $
then
$ \frac{dy}{dx} $
is equal to
KEAM
Mathematics
Differentiability
If
$A = \begin{pmatrix}1&0\\ 1&1\end{pmatrix}$
, then
$A^n + nI$
is equal to
KEAM
Mathematics
Matrices
A complete cycle of a traffic light takes
$60\, seconds$
. During each cycle the light is green for
$25\, seconds$
, yellow for
$5 \,seconds$
and red for
$30\, seconds$
. At a randomly chosen time, the probability that the light will not be green, is
KEAM
Mathematics
Probability
Which one of the following functions is one-to-one?
KEAM
Mathematics
Functions
If
$A = \begin{pmatrix}1&5\\ 0&2\end{pmatrix}$
, then
KEAM
Mathematics
Matrices
$\int\frac{1}{\sin x\, \cos x}$
dx is equal to
KEAM
Mathematics
Integrals of Some Particular Functions
If
$|z + 1| < |z - 1|$
, then
$z$
lies
KEAM
Mathematics
linear inequalities
If
$a$
is positive and if
$A$
and
$G$
are the arithmetic mean and the geometric mean of the roots of
$ {{x}^{2}}-2ax+{{a}^{2}}=0 $
respectively, then
KEAM
Mathematics
Complex Numbers and Quadratic Equations
If a
$_1$
= 4 and
$a_{n+1}=a_{n}+4n\quad for\quad n\ge1. $
then the value of a
$_{100}$
is
KEAM
Mathematics
Sequence and series
If
$C_{0}$
,
$C_{1}$
,
$C_{2}$
,
$C_{3}$
,
$\cdots$
are binomial coefficients in the expansion of
$(1 + x)^n$
, then
$\frac{C_{0}}{3}- \frac{C_{1}}{4}+ \frac{C_{2}}{5}- \frac{C_{3}}{6}+ \cdots$
is equal to
KEAM
Mathematics
Binomial theorem
If
$a_1, a_2 , a_3 , a_4$
are in A.P., then
$\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\frac{1}{\sqrt{a_{3}}+\sqrt{a_{4}}}=$
KEAM
Mathematics
Sequence and series
A die has four blank faces and two faces marked
$3$
. The chance of getting a total of
$12$
in
$5$
throws is
KEAM
Mathematics
Probability
If
$ \alpha $
and
$ \beta $
are the roots of the equation
$ a{{x}^{2}}+ $
$ bx+c=0,\text{ }\alpha \beta =3 $
and
$a, b, c$
are in
$A.P.$
, then
$ \alpha +\beta $
is equal to
KEAM
Mathematics
Complex Numbers and Quadratic Equations
The period of the function
$f\left(x\right)= cos 4x+$
tan
$3x$
is
KEAM
Mathematics
Properties of Inverse Trigonometric Functions
The value of
$ \displaystyle\lim _{x \rightarrow 0} \frac{\cot 4 x}{\text{cosec} 3 x}$
is equal to
KEAM
Mathematics
Derivatives
Suppose
$a, b$
and
$c$
are real numbers such that
$ \frac{a}{b}>1 $
and
$ \frac{a}{c}<0 $
. Which one of the following is true?
KEAM
Mathematics
linear inequalities
$\displaystyle\lim_{x\to0}\frac{e^{x^2} -cos x}{x^{2}}=$
KEAM
Mathematics
Derivatives
$\int\left(\frac{x-a}{x}-\frac{x}{x+a}\right) dx$
is equal to
KEAM
Mathematics
Integrals of Some Particular Functions
Prev
1
...
21
22
23
24
25
...
27
Next