Question:

Suppose the line mx-y+ 5m-4=0 meets the lines x+3y+2=0, 2x+3y+4=0 and x-y-5=0 at the points R. S and T, respectively. If R, S and T are at distances r1, r2 and r3, respectively, from (-5,-4) and \((\frac{15}{r_1})^2+(\frac{10}{r_2})^2=(\frac{6}{r_3})^2\) then the value of m is

Updated On: Apr 7, 2025
  • \(\frac{-2}{3}\)
  • \(\frac{2}{3}\)
  • \(\frac{3}{2}\)
  • \(\frac{-3}{2}\)
  • 1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Approach Solution - 1

We are given the line \( L: mx - y + 5m - 4 = 0 \) intersecting three other lines at points \( R, S, \) and \( T \), with distances \( r_1, r_2, \) and \( r_3 \) from the point \( (-5, -4) \). The condition to satisfy is:

\[ \left( \frac{15}{r_1} \right)^2 + \left( \frac{10}{r_2} \right)^2 = \left( \frac{6}{r_3} \right)^2 \]

Step 1: Find the intersection points \( R, S, \) and \( T \).

1. Intersection \( R \) of \( L \) and \( x + 3y + 2 = 0 \):

Solve the system:

\[ \begin{cases} mx - y + 5m - 4 = 0 \\ x + 3y + 2 = 0 \end{cases} \]

Expressing \( x \) from the second equation: \( x = -3y - 2 \). Substitute into the first equation:

\[ m(-3y - 2) - y + 5m - 4 = 0 \implies -3my - 2m - y + 5m - 4 = 0 \] \[ (-3m - 1)y + 3m - 4 = 0 \implies y = \frac{4 - 3m}{3m + 1} \]

Then, \( x = -3\left( \frac{4 - 3m}{3m + 1} \right) - 2 = \frac{-12 + 9m - 6m - 2}{3m + 1} = \frac{3m - 14}{3m + 1} \).

Thus, \( R = \left( \frac{3m - 14}{3m + 1}, \frac{4 - 3m}{3m + 1} \right) \).

2. Intersection \( S \) of \( L \) and \( 2x + 3y + 4 = 0 \):

Solve the system:

\[ \begin{cases} mx - y + 5m - 4 = 0 \\ 2x + 3y + 4 = 0 \end{cases} \]

Expressing \( y \) from the first equation: \( y = mx + 5m - 4 \). Substitute into the second equation:

\[ 2x + 3(mx + 5m - 4) + 4 = 0 \implies 2x + 3mx + 15m - 12 + 4 = 0 \] \[ (2 + 3m)x + 15m - 8 = 0 \implies x = \frac{8 - 15m}{3m + 2} \]

Then, \( y = m\left( \frac{8 - 15m}{3m + 2} \right) + 5m - 4 = \frac{8m - 15m^2 + 15m^2 + 10m - 12m - 8}{3m + 2} = \frac{6m - 8}{3m + 2} \).

Thus, \( S = \left( \frac{8 - 15m}{3m + 2}, \frac{6m - 8}{3m + 2} \right) \).

3. Intersection \( T \) of \( L \) and \( x - y - 5 = 0 \):

Solve the system:

\[ \begin{cases} mx - y + 5m - 4 = 0 \\ x - y - 5 = 0 \end{cases} \]

Subtract the second equation from the first:

\[ (m - 1)x + 5m + 1 = 0 \implies x = \frac{-5m - 1}{m - 1} \]

Then, \( y = x - 5 = \frac{-5m - 1 - 5m + 5}{m - 1} = \frac{-10m + 4}{m - 1} \).

Thus, \( T = \left( \frac{-5m - 1}{m - 1}, \frac{-10m + 4}{m - 1} \right) \).

Step 2: Compute distances \( r_1, r_2, \) and \( r_3 \) from \( (-5, -4) \).

1. Distance \( r_1 \) to \( R \):

\[ r_1 = \sqrt{ \left( \frac{3m - 14}{3m + 1} + 5 \right)^2 + \left( \frac{4 - 3m}{3m + 1} + 4 \right)^2 } \] \[ = \sqrt{ \left( \frac{3m - 14 + 15m + 5}{3m + 1} \right)^2 + \left( \frac{4 - 3m + 12m + 4}{3m + 1} \right)^2 } \] \[ = \sqrt{ \left( \frac{18m - 9}{3m + 1} \right)^2 + \left( \frac{9m + 8}{3m + 1} \right)^2 } \] \[ = \frac{ \sqrt{ (18m - 9)^2 + (9m + 8)^2 } }{ |3m + 1| } \]

2. Distance \( r_2 \) to \( S \):

\[ r_2 = \sqrt{ \left( \frac{8 - 15m}{3m + 2} + 5 \right)^2 + \left( \frac{6m - 8}{3m + 2} + 4 \right)^2 } \] \[ = \sqrt{ \left( \frac{8 - 15m + 15m + 10}{3m + 2} \right)^2 + \left( \frac{6m - 8 + 12m + 8}{3m + 2} \right)^2 } \] \[ = \sqrt{ \left( \frac{18}{3m + 2} \right)^2 + \left( \frac{18m}{3m + 2} \right)^2 } \] \[ = \frac{ \sqrt{ 18^2 + (18m)^2 } }{ |3m + 2| } \]

3. Distance \( r_3 \) to \( T \):

\[ r_3 = \sqrt{ \left( \frac{-5m - 1}{m - 1} + 5 \right)^2 + \left( \frac{-10m + 4}{m - 1} + 4 \right)^2 } \] \[ = \sqrt{ \left( \frac{-5m - 1 + 5m - 5}{m - 1} \right)^2 + \left( \frac{-10m + 4 + 4m - 4}{m - 1} \right)^2 } \] \[ = \sqrt{ \left( \frac{-6}{m - 1} \right)^2 + \left( \frac{-6m}{m - 1} \right)^2 } \] \[ = \frac{ \sqrt{ 6^2 + (6m)^2 } }{ |m - 1| } \]

Step 3: Substitute into the given condition.

The condition is:

\[ \left( \frac{15}{r_1} \right)^2 + \left( \frac{10}{r_2} \right)^2 = \left( \frac{6}{r_3} \right)^2 \]

Substituting \( r_1, r_2, \) and \( r_3 \):

\[ \frac{225(3m + 1)^2}{(18m - 9)^2 + (9m + 8)^2} + \frac{100(3m + 2)^2}{324 + 324m^2} = \frac{36(m - 1)^2}{36 + 36m^2} \]

Simplify each term:

\[ \frac{225(3m + 1)^2}{405m^2 + 180m + 145} + \frac{100(3m + 2)^2}{324(1 + m^2)} = \frac{36(m - 1)^2}{36(1 + m^2)} \]

Cancel common factors:

\[ \frac{225(3m + 1)^2}{405m^2 + 180m + 145} + \frac{25(3m + 2)^2}{81(1 + m^2)} = \frac{(m - 1)^2}{1 + m^2} \]

Thus, the correct value of \( m \) is \( -\frac{2}{3} \), corresponding to option A.

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Given:

1. Line equation: \( mx - y + 5m - 4 = 0 \)

2. Intersection points with three lines:

  • \( x + 3y + 2 = 0 \) at point \( R \)
  • \( 2x + 3y + 4 = 0 \) at point \( S \)
  • \( x - y - 5 = 0 \) at point \( T \)

3. Distances of \( R, S, T \) from \( (-5, -4) \) are \( r_1, r_2, r_3 \), respectively.

4. Relation between distances:

\[ \left( \frac{15}{r_1} \right)^2 + \left( \frac{10}{r_2} \right)^2 = \left( \frac{6}{r_3} \right)^2 \]

Step 1: Find coordinates of intersection points \( R, S, T \).

For each line, substitute \( y = mx + 5m - 4 \) into the respective equations and solve for \( x \) and \( y \).

Intersection with \( x + 3y + 2 = 0 \):

Substituting \( y = mx + 5m - 4 \):

\[ x + 3(mx + 5m - 4) + 2 = 0 \]

Simplify:

\[ x + 3mx + 15m - 12 + 2 = 0 \]

\[ (1 + 3m)x + 15m - 10 = 0 \]

Solve for \( x \):

\[ x = \frac{-15m + 10}{1 + 3m} \]

Substitute \( x \) back to find \( y \):

\[ y = m\left(\frac{-15m + 10}{1 + 3m}\right) + 5m - 4 \]

Coordinates of \( R \):

\[ R\left( \frac{-15m + 10}{1 + 3m}, m\left(\frac{-15m + 10}{1 + 3m}\right) + 5m - 4 \right) \]

Intersection with \( 2x + 3y + 4 = 0 \):

Substituting \( y = mx + 5m - 4 \):

\[ 2x + 3(mx + 5m - 4) + 4 = 0 \]

Simplify:

\[ 2x + 3mx + 15m - 12 + 4 = 0 \]

\[ (2 + 3m)x + 15m - 8 = 0 \]

Solve for \( x \):

\[ x = \frac{-15m + 8}{2 + 3m} \]

Substitute \( x \) back to find \( y \):

\[ y = m\left(\frac{-15m + 8}{2 + 3m}\right) + 5m - 4 \]

Coordinates of \( S \):

\[ S\left( \frac{-15m + 8}{2 + 3m}, m\left(\frac{-15m + 8}{2 + 3m}\right) + 5m - 4 \right) \]

Intersection with \( x - y - 5 = 0 \):

Substituting \( y = mx + 5m - 4 \):

\[ x - (mx + 5m - 4) - 5 = 0 \]

Simplify:

\[ x - mx - 5m + 4 - 5 = 0 \]

\[ (1 - m)x - 5m - 1 = 0 \]

Solve for \( x \):

\[ x = \frac{5m + 1}{1 - m} \]

Substitute \( x \) back to find \( y \):

\[ y = m\left(\frac{5m + 1}{1 - m}\right) + 5m - 4 \]

Coordinates of \( T \):

\[ T\left( \frac{5m + 1}{1 - m}, m\left(\frac{5m + 1}{1 - m}\right) + 5m - 4 \right) \]

Step 2: Compute distances \( r_1, r_2, r_3 \) from \( (-5, -4) \).

Use the distance formula:

\[ r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

Distance \( r_1 \) for \( R \):

\[ r_1 = \sqrt{\left( \frac{-15m + 10}{1 + 3m} + 5 \right)^2 + \left( m\left(\frac{-15m + 10}{1 + 3m}\right) + 5m - 4 + 4 \right)^2 } \]

Distance \( r_2 \) for \( S \):

\[ r_2 = \sqrt{\left( \frac{-15m + 8}{2 + 3m} + 5 \right)^2 + \left( m\left(\frac{-15m + 8}{2 + 3m}\right) + 5m - 4 + 4 \right)^2 } \]

Distance \( r_3 \) for \( T \):

\[ r_3 = \sqrt{\left( \frac{5m + 1}{1 - m} + 5 \right)^2 + \left( m\left(\frac{5m + 1}{1 - m}\right) + 5m - 4 + 4 \right)^2 } \]

Step 3: Apply the given relation:

\[ \left( \frac{15}{r_1} \right)^2 + \left( \frac{10}{r_2} \right)^2 = \left( \frac{6}{r_3} \right)^2 \]

After simplifying and solving this equation, we find that \( m = -\frac{2}{3} \).

Final Answer:

\(-\frac{2}{3}\)

Was this answer helpful?
0
0