We are given two lines with direction cosines proportional to:
Line 1: \( \langle 4, \sqrt{3} - 1, -\sqrt{3} - 1 \rangle \)
Line 2: \( \langle 4, -\sqrt{3} - 1, \sqrt{3} - 1 \rangle \)
To find the angle \( \theta \) between these lines, we use the dot product formula for direction ratios:
\[ \cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \]
First, compute the dot product of the direction ratios:
\[ 4 \cdot 4 + (\sqrt{3} - 1)(-\sqrt{3} - 1) + (-\sqrt{3} - 1)(\sqrt{3} - 1) \]
\[ = 16 + \left[ -(\sqrt{3})^2 - \sqrt{3} + \sqrt{3} + 1 \right] + \left[ -(\sqrt{3})^2 + \sqrt{3} - \sqrt{3} + 1 \right] \]
\[ = 16 + \left[ -3 + 1 \right] + \left[ -3 + 1 \right] \]
\[ = 16 - 2 - 2 = 12 \]
Next, compute the magnitudes of the direction ratios:
For Line 1:
\[ \sqrt{4^2 + (\sqrt{3} - 1)^2 + (-\sqrt{3} - 1)^2} \]
\[ = \sqrt{16 + (3 - 2\sqrt{3} + 1) + (3 + 2\sqrt{3} + 1)} \]
\[ = \sqrt{16 + 4 - 2\sqrt{3} + 4 + 2\sqrt{3}} \]
\[ = \sqrt{24} = 2\sqrt{6} \]
For Line 2:
\[ \sqrt{4^2 + (-\sqrt{3} - 1)^2 + (\sqrt{3} - 1)^2} \]
\[ = \sqrt{16 + (3 + 2\sqrt{3} + 1) + (3 - 2\sqrt{3} + 1)} \]
\[ = \sqrt{16 + 4 + 2\sqrt{3} + 4 - 2\sqrt{3}} \]
\[ = \sqrt{24} = 2\sqrt{6} \]
Now, substitute into the dot product formula:
\[ \cos \theta = \frac{12}{(2\sqrt{6})(2\sqrt{6})} = \frac{12}{24} = \frac{1}{2} \]
Thus, the angle \( \theta \) is:
\[ \theta = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \]
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: