We are given two lines with direction cosines proportional to:
Line 1: \( \langle 4, \sqrt{3} - 1, -\sqrt{3} - 1 \rangle \)
Line 2: \( \langle 4, -\sqrt{3} - 1, \sqrt{3} - 1 \rangle \)
To find the angle \( \theta \) between these lines, we use the dot product formula for direction ratios:
\[ \cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \]
First, compute the dot product of the direction ratios:
\[ 4 \cdot 4 + (\sqrt{3} - 1)(-\sqrt{3} - 1) + (-\sqrt{3} - 1)(\sqrt{3} - 1) \]
\[ = 16 + \left[ -(\sqrt{3})^2 - \sqrt{3} + \sqrt{3} + 1 \right] + \left[ -(\sqrt{3})^2 + \sqrt{3} - \sqrt{3} + 1 \right] \]
\[ = 16 + \left[ -3 + 1 \right] + \left[ -3 + 1 \right] \]
\[ = 16 - 2 - 2 = 12 \]
Next, compute the magnitudes of the direction ratios:
For Line 1:
\[ \sqrt{4^2 + (\sqrt{3} - 1)^2 + (-\sqrt{3} - 1)^2} \]
\[ = \sqrt{16 + (3 - 2\sqrt{3} + 1) + (3 + 2\sqrt{3} + 1)} \]
\[ = \sqrt{16 + 4 - 2\sqrt{3} + 4 + 2\sqrt{3}} \]
\[ = \sqrt{24} = 2\sqrt{6} \]
For Line 2:
\[ \sqrt{4^2 + (-\sqrt{3} - 1)^2 + (\sqrt{3} - 1)^2} \]
\[ = \sqrt{16 + (3 + 2\sqrt{3} + 1) + (3 - 2\sqrt{3} + 1)} \]
\[ = \sqrt{16 + 4 + 2\sqrt{3} + 4 - 2\sqrt{3}} \]
\[ = \sqrt{24} = 2\sqrt{6} \]
Now, substitute into the dot product formula:
\[ \cos \theta = \frac{12}{(2\sqrt{6})(2\sqrt{6})} = \frac{12}{24} = \frac{1}{2} \]
Thus, the angle \( \theta \) is:
\[ \theta = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \]
Step 1: Understand the problem and given information.
We are tasked with finding the angle between two lines whose direction cosines are proportional to:
The angle \( \theta \) between two lines can be found using the formula:
\[ \cos\theta = \frac{l_1l_2 + m_1m_2 + n_1n_2}{\sqrt{l_1^2 + m_1^2 + n_1^2} \cdot \sqrt{l_2^2 + m_2^2 + n_2^2}}, \]
where \( l_1, m_1, n_1 \) and \( l_2, m_2, n_2 \) are the direction ratios of the two lines.
Step 2: Assign direction ratios for the two lines.
Let the direction ratios for Line 1 be:
\[ l_1 = 4, \quad m_1 = \sqrt{3} - 1, \quad n_1 = -\sqrt{3} - 1. \]
Let the direction ratios for Line 2 be:
\[ l_2 = 4, \quad m_2 = -\sqrt{3} - 1, \quad n_2 = \sqrt{3} - 1. \]
Step 3: Compute the numerator of \( \cos\theta \).
The numerator is given by:
\[ l_1l_2 + m_1m_2 + n_1n_2. \]
Substitute the values:
\[ l_1l_2 = 4 \cdot 4 = 16, \]
\[ m_1m_2 = (\sqrt{3} - 1)(-\sqrt{3} - 1) = -(\sqrt{3} - 1)(\sqrt{3} + 1) = -(3 - 1) = -2, \]
\[ n_1n_2 = (-\sqrt{3} - 1)(\sqrt{3} - 1) = -(\sqrt{3} + 1)(\sqrt{3} - 1) = -(3 - 1) = -2. \]
Add these terms:
\[ l_1l_2 + m_1m_2 + n_1n_2 = 16 - 2 - 2 = 12. \]
Step 4: Compute the denominator of \( \cos\theta \).
The denominator is given by:
\[ \sqrt{l_1^2 + m_1^2 + n_1^2} \cdot \sqrt{l_2^2 + m_2^2 + n_2^2}. \]
First, compute \( l_1^2 + m_1^2 + n_1^2 \):
\[ l_1^2 = 4^2 = 16, \quad m_1^2 = (\sqrt{3} - 1)^2 = 3 - 2\sqrt{3} + 1 = 4 - 2\sqrt{3}, \]
\[ n_1^2 = (-\sqrt{3} - 1)^2 = 3 + 2\sqrt{3} + 1 = 4 + 2\sqrt{3}. \]
Add these terms:
\[ l_1^2 + m_1^2 + n_1^2 = 16 + (4 - 2\sqrt{3}) + (4 + 2\sqrt{3}) = 16 + 4 + 4 = 24. \]
Thus:
\[ \sqrt{l_1^2 + m_1^2 + n_1^2} = \sqrt{24} = 2\sqrt{6}. \]
Next, compute \( l_2^2 + m_2^2 + n_2^2 \):
Since the direction ratios of Line 2 are symmetric to those of Line 1, we have:
\[ l_2^2 + m_2^2 + n_2^2 = 24. \]
Thus:
\[ \sqrt{l_2^2 + m_2^2 + n_2^2} = \sqrt{24} = 2\sqrt{6}. \]
The denominator becomes:
\[ \sqrt{l_1^2 + m_1^2 + n_1^2} \cdot \sqrt{l_2^2 + m_2^2 + n_2^2} = (2\sqrt{6})(2\sqrt{6}) = 24. \]
Step 5: Compute \( \cos\theta \).
Substitute into the formula for \( \cos\theta \):
\[ \cos\theta = \frac{l_1l_2 + m_1m_2 + n_1n_2}{\sqrt{l_1^2 + m_1^2 + n_1^2} \cdot \sqrt{l_2^2 + m_2^2 + n_2^2}} = \frac{12}{24} = \frac{1}{2}. \]
Step 6: Find the angle \( \theta \).
If \( \cos\theta = \frac{1}{2} \), then:
\[ \theta = \frac{\pi}{3}. \]
Final Answer:
\( \frac{\pi}{3} \)
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.