We are given two lines with direction cosines proportional to:
Line 1: \( \langle 4, \sqrt{3} - 1, -\sqrt{3} - 1 \rangle \)
Line 2: \( \langle 4, -\sqrt{3} - 1, \sqrt{3} - 1 \rangle \)
To find the angle \( \theta \) between these lines, we use the dot product formula for direction ratios:
\[ \cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \]
First, compute the dot product of the direction ratios:
\[ 4 \cdot 4 + (\sqrt{3} - 1)(-\sqrt{3} - 1) + (-\sqrt{3} - 1)(\sqrt{3} - 1) \]
\[ = 16 + \left[ -(\sqrt{3})^2 - \sqrt{3} + \sqrt{3} + 1 \right] + \left[ -(\sqrt{3})^2 + \sqrt{3} - \sqrt{3} + 1 \right] \]
\[ = 16 + \left[ -3 + 1 \right] + \left[ -3 + 1 \right] \]
\[ = 16 - 2 - 2 = 12 \]
Next, compute the magnitudes of the direction ratios:
For Line 1:
\[ \sqrt{4^2 + (\sqrt{3} - 1)^2 + (-\sqrt{3} - 1)^2} \]
\[ = \sqrt{16 + (3 - 2\sqrt{3} + 1) + (3 + 2\sqrt{3} + 1)} \]
\[ = \sqrt{16 + 4 - 2\sqrt{3} + 4 + 2\sqrt{3}} \]
\[ = \sqrt{24} = 2\sqrt{6} \]
For Line 2:
\[ \sqrt{4^2 + (-\sqrt{3} - 1)^2 + (\sqrt{3} - 1)^2} \]
\[ = \sqrt{16 + (3 + 2\sqrt{3} + 1) + (3 - 2\sqrt{3} + 1)} \]
\[ = \sqrt{16 + 4 + 2\sqrt{3} + 4 - 2\sqrt{3}} \]
\[ = \sqrt{24} = 2\sqrt{6} \]
Now, substitute into the dot product formula:
\[ \cos \theta = \frac{12}{(2\sqrt{6})(2\sqrt{6})} = \frac{12}{24} = \frac{1}{2} \]
Thus, the angle \( \theta \) is:
\[ \theta = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \]
Step 1: Understand the problem and given information.
We are tasked with finding the angle between two lines whose direction cosines are proportional to:
The angle \( \theta \) between two lines can be found using the formula:
\[ \cos\theta = \frac{l_1l_2 + m_1m_2 + n_1n_2}{\sqrt{l_1^2 + m_1^2 + n_1^2} \cdot \sqrt{l_2^2 + m_2^2 + n_2^2}}, \]
where \( l_1, m_1, n_1 \) and \( l_2, m_2, n_2 \) are the direction ratios of the two lines.
Step 2: Assign direction ratios for the two lines.
Let the direction ratios for Line 1 be:
\[ l_1 = 4, \quad m_1 = \sqrt{3} - 1, \quad n_1 = -\sqrt{3} - 1. \]
Let the direction ratios for Line 2 be:
\[ l_2 = 4, \quad m_2 = -\sqrt{3} - 1, \quad n_2 = \sqrt{3} - 1. \]
Step 3: Compute the numerator of \( \cos\theta \).
The numerator is given by:
\[ l_1l_2 + m_1m_2 + n_1n_2. \]
Substitute the values:
\[ l_1l_2 = 4 \cdot 4 = 16, \]
\[ m_1m_2 = (\sqrt{3} - 1)(-\sqrt{3} - 1) = -(\sqrt{3} - 1)(\sqrt{3} + 1) = -(3 - 1) = -2, \]
\[ n_1n_2 = (-\sqrt{3} - 1)(\sqrt{3} - 1) = -(\sqrt{3} + 1)(\sqrt{3} - 1) = -(3 - 1) = -2. \]
Add these terms:
\[ l_1l_2 + m_1m_2 + n_1n_2 = 16 - 2 - 2 = 12. \]
Step 4: Compute the denominator of \( \cos\theta \).
The denominator is given by:
\[ \sqrt{l_1^2 + m_1^2 + n_1^2} \cdot \sqrt{l_2^2 + m_2^2 + n_2^2}. \]
First, compute \( l_1^2 + m_1^2 + n_1^2 \):
\[ l_1^2 = 4^2 = 16, \quad m_1^2 = (\sqrt{3} - 1)^2 = 3 - 2\sqrt{3} + 1 = 4 - 2\sqrt{3}, \]
\[ n_1^2 = (-\sqrt{3} - 1)^2 = 3 + 2\sqrt{3} + 1 = 4 + 2\sqrt{3}. \]
Add these terms:
\[ l_1^2 + m_1^2 + n_1^2 = 16 + (4 - 2\sqrt{3}) + (4 + 2\sqrt{3}) = 16 + 4 + 4 = 24. \]
Thus:
\[ \sqrt{l_1^2 + m_1^2 + n_1^2} = \sqrt{24} = 2\sqrt{6}. \]
Next, compute \( l_2^2 + m_2^2 + n_2^2 \):
Since the direction ratios of Line 2 are symmetric to those of Line 1, we have:
\[ l_2^2 + m_2^2 + n_2^2 = 24. \]
Thus:
\[ \sqrt{l_2^2 + m_2^2 + n_2^2} = \sqrt{24} = 2\sqrt{6}. \]
The denominator becomes:
\[ \sqrt{l_1^2 + m_1^2 + n_1^2} \cdot \sqrt{l_2^2 + m_2^2 + n_2^2} = (2\sqrt{6})(2\sqrt{6}) = 24. \]
Step 5: Compute \( \cos\theta \).
Substitute into the formula for \( \cos\theta \):
\[ \cos\theta = \frac{l_1l_2 + m_1m_2 + n_1n_2}{\sqrt{l_1^2 + m_1^2 + n_1^2} \cdot \sqrt{l_2^2 + m_2^2 + n_2^2}} = \frac{12}{24} = \frac{1}{2}. \]
Step 6: Find the angle \( \theta \).
If \( \cos\theta = \frac{1}{2} \), then:
\[ \theta = \frac{\pi}{3}. \]
Final Answer:
\( \frac{\pi}{3} \)
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]