We are given the limit: \[ \lim_{x \to 2} \frac{3x^2 + ax - 2}{x^2 - x - 6} \] First, factor the denominator: \[ x^2 - x - 6 = (x - 3)(x + 2) \] Now, substitute \( x = 2 \) into the denominator: \[ (x - 3)(x + 2) \bigg|_{x = 2} = (2 - 3)(2 + 2) = (-1)(4) = -4 \] For the limit to be finite, the numerator must also approach zero at \( x = 2 \), otherwise, the limit would be infinite. Therefore, substitute \( x = 2 \) into the numerator: \[ 3x^2 + ax - 2 \bigg|_{x = 2} = 3(2^2) + a(2) - 2 = 12 + 2a - 2 = 10 + 2a \] For the numerator to approach zero at \( x = 2 \), we set: \[ 10 + 2a = 0 \] Solving for \( a \): \[ 2a = -10 \quad \Rightarrow \quad a = -5 \]
The correct option is (D) : \(5\)
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.