Given:
Step 1: Minimum LHS value: \[ \frac{1}{2}(x - 2)^2 + 1 \geq 1 \]
Step 2: RHS range: \[ \sin\left(\frac{a}{x}\right) \in [-1, 1] \]
Step 3: Find critical point: \[ x = 2 \implies \sin\left(\frac{a}{2}\right) = 1 \]
Solution: \( a = (4n + 1)\pi \)
The given equation is:
\[ \frac{1}{2}(x - 2)^2 + 1 = \sin\left(\frac{a}{x}\right) \]
Let's analyze the left-hand side (LHS):
\[ f(x) = \frac{1}{2}(x - 2)^2 + 1 \]
This is a parabola with a vertex at \( (2, 1) \). The minimum value of \( f(x) \) is 1, and it increases as \( x \) moves away from 2.
Now let's analyze the right-hand side (RHS):
\[ g(x) = \sin\left(\frac{a}{x}\right) \]
The range of the sine function is \([-1, 1]\).
For the equation to hold, we must have:
\[ 1 \leq \frac{1}{2}(x - 2)^2 + 1 \leq 1 \]
This implies that \( \frac{1}{2}(x - 2)^2 = 0 \), which means \( x = 2 \).
Substituting \( x = 2 \) into the original equation:
\[ \frac{1}{2}(2 - 2)^2 + 1 = \sin\left(\frac{a}{2}\right) \] \[ 1 = \sin\left(\frac{a}{2}\right) \]
This means:
\[ \frac{a}{2} = \frac{\pi}{2} + 2n\pi \quad \text{or} \quad \frac{a}{2} = \frac{3\pi}{2} + 2n\pi, \quad \text{where } n \text{ is an integer.} \]
Therefore:
\[ a = \pi + 4n\pi = (4n + 1)\pi \quad \text{or} \quad a = 3\pi + 4n\pi = (4n + 3)\pi \]
If we let \( m = 4n+1 \) or \( m = 4n+3 \), then the general solution is \( a = m\pi \), where \( m \) is an odd integer.
This matches the given option \( (4n+1)\pi \), which represents a subset of the general solution (odd multiples of \( \pi \)).
Let \( M \) and \( m \) respectively be the maximum and the minimum values of \( f(x) = \begin{vmatrix} 1 + \sin^2x & \cos^2x & 4\sin4x \\ \sin^2x & 1 + \cos^2x & 4\sin4x \\ \sin^2x & \cos^2x & 1 + 4\sin4x \end{vmatrix}, \quad x \in \mathbb{R} \) for \( x \in \mathbb{R} \). Then \( M^4 - m^4 \) is equal to:
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.