\(\dfrac{3+sin^2y}{1+3sin^2y}\)
\(\dfrac{3+cos^2y}{1+3cos^2y}\)
\(\dfrac{3+sin^2y}{1-3sin^2y}\)
\(\dfrac{3+sin^2y}{1-3cos^2y}\)
\(\dfrac{1+3sin^2y}{1-3cos^2y}\)
Given:
Step 1: Let \( a = \sin x \) and \( b = \sin y \). Rewrite the equation: \[ \frac{1 + a}{1 - a} = \frac{(1 + b)^3}{(1 - b)^3} \]
Step 2: Take cube roots of both sides: \[ \left(\frac{1 + a}{1 - a}\right)^{1/3} = \frac{1 + b}{1 - b} \]
Step 3: Apply componendo-dividendo: \[ \frac{\left(\frac{1 + a}{1 - a}\right)^{1/3} + 1}{\left(\frac{1 + a}{1 - a}\right)^{1/3} - 1} = \frac{\frac{1 + b}{1 - b} + 1}{\frac{1 + b}{1 - b} - 1} = \frac{\frac{2}{1 - b}}{\frac{2b}{1 - b}} = \frac{1}{b} \]
Step 4: Similarly, apply componendo-dividendo to the left side: \[ \frac{(1 + a)^{1/3} + (1 - a)^{1/3}}{(1 + a)^{1/3} - (1 - a)^{1/3}} = \frac{1}{b} \]
Step 5: Let \( k = \frac{(1 + a)^{1/3}}{(1 - a)^{1/3}} \). Then: \[ \frac{k + 1}{k - 1} = \frac{1}{b} \implies k = \frac{1 + b}{1 - b} \]
Step 6: Substitute back for \( k \): \[ \frac{1 + a}{1 - a} = \left(\frac{1 + b}{1 - b}\right)^3 \] This matches the original equation, confirming our approach.
Step 7: Solve for \( a \) in terms of \( b \): \[ a = \frac{3b + b^3}{1 + 3b^2} \]
Step 8: Compute \( \frac{\sin x}{\sin y} = \frac{a}{b} \): \[ \frac{a}{b} = \frac{3 + b^2}{1 + 3b^2} = \frac{3 + \sin^2 y}{1 + 3 \sin^2 y} \]
Conclusion: The correct expression is \( \frac{3 + \sin^2 y}{1 + 3 \sin^2 y} \).
Given
\(\dfrac{1+sinx}{1-sinx}=\dfrac{(1+siny)^3}{(1-siny)^3}\)
\(⇒\dfrac{1+sinx}{1-sinx}=\dfrac{1 + sin3 y + 3 sin y + 3 sin2 y }{1− sin3 y + 3 sin2 y − 3 sin y }\)
\(⇒\dfrac{1+sin x+1−sin x}{1+sin x−(1−sin x)}\)\(=\dfrac{1+sin3 y+3 sin y+3 sin2 y+1−sin3 y+3 sin2 y−3 sin y}{1+sin3 y+3 sin y+3 sin2 y−(1−sin3 y+3 sin2 y−3 sin y)}\)
\(⇒\dfrac{2}{2sinx}=\dfrac{2+6sin^2y}{2sin^3y + 6 siny}\)
\(⇒\dfrac{1}{sinx}=\dfrac{1+3sin^2y}{sin^3y+3siny}\)
\(⇒sinx=\dfrac{sin^3y+3siny}{1+3sin^2y}\)
\(⇒\dfrac{sinx}{siny}=\dfrac{sin^2y+3}{1+3siny}\)
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.