Given:
We need to find \( P((A \cap B)^c \cup C^c) \).
Step 1: Find \( A \cap B \): \[ A \cap B = \{1, 5\} \]
Step 2: Find its complement \( (A \cap B)^c \): \[ (A \cap B)^c = \Omega \setminus \{1, 5\} = \{2, 3, 4\} \]
Step 3: Find \( C^c \): \[ C^c = \Omega \setminus \{2, 3, 5\} = \{1, 4\} \]
Step 4: Compute the union \( (A \cap B)^c \cup C^c \): \[ \{2, 3, 4\} \cup \{1, 4\} = \{1, 2, 3, 4\} \]
Step 5: Calculate the probability: \[ P(\{1, 2, 3, 4\}) = \frac{4}{5} \]
The correct answer is (D) \( \frac{4}{5} \).
Given the sample space \( \Omega = \{1, 2, 3, 4, 5\} \), and the events:
\[ A = \{1, 2, 5\}, \quad B = \{1, 3, 5\}, \quad C = \{2, 3, 5\} \]
We want to find \( P((A \cap B)^c \cup C^c) \).
First, let's find \( A \cap B \):
\[ A \cap B = \{1, 5\} \]
Then, find the complement of \( (A \cap B) \):
\[ (A \cap B)^c = \Omega - (A \cap B) = \{2, 3, 4\} \]
Next, find the complement of \( C \):
\[ C^c = \Omega - C = \{1, 4\} \]
Now, let's find the union of \( (A \cap B)^c \) and \( C^c \):
\[ (A \cap B)^c \cup C^c = \{1, 2, 3, 4\} \]
Assuming each outcome in \( \Omega \) is equally likely, the probability of each outcome is \( \frac{1}{5} \). Therefore:
\[ P((A \cap B)^c \cup C^c) = \frac{\text{number of elements in } (A \cap B)^c \cup C^c}{\text{number of elements in } \Omega} = \frac{4}{5} \]
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.