Step 1: Let \( A = \frac{\alpha}{2} \), \( B = \frac{\beta}{2} \), \( C = \frac{\gamma}{2} \). Then: \[ A + B + C = \pi \]
Step 2: Using the trigonometric identity for angles summing to \( \pi \): \[ \cot A \cot B + \cot A \cot C + \cot B \cot C = 1 \]
Step 3: Substitute back the original variables: \[ \cot\left(\frac{\alpha}{2}\right)\cot\left(\frac{\beta}{2}\right) + \cot\left(\frac{\alpha}{2}\right)\cot\left(\frac{\gamma}{2}\right) + \cot\left(\frac{\beta}{2}\right)\cot\left(\frac{\gamma}{2}\right) = 1 \]
The correct answer is (B) 1.
Let the given expression be denoted as \( E \).
We are given that \( \alpha + \beta + \gamma = 2\pi \). We want to find the value of:
\[ E = \cot\left(\frac{\alpha}{2}\right)\cot\left(\frac{\beta}{2}\right) + \cot\left(\frac{\alpha}{2}\right)\cot\left(\frac{\gamma}{2}\right) + \cot\left(\frac{\beta}{2}\right)\cot\left(\frac{\gamma}{2}\right) \]
We can use the cotangent addition formula:
\[ \cot(A + B) = \frac{\cot A \cot B - 1}{\cot A + \cot B} \]
Since \( \alpha + \beta + \gamma = 2\pi \), we have \( \alpha + \beta = 2\pi - \gamma \). Dividing by 2:
\[ \frac{\alpha + \beta}{2} = \pi - \frac{\gamma}{2} \]
Now, let's use the cotangent addition formula on \( \frac{\alpha}{2} + \frac{\beta}{2} \):
\[ \cot\left(\frac{\alpha + \beta}{2}\right) = \frac{\cot\left(\frac{\alpha}{2}\right)\cot\left(\frac{\beta}{2}\right) - 1}{\cot\left(\frac{\alpha}{2}\right) + \cot\left(\frac{\beta}{2}\right)} \]
Substituting \( \frac{\alpha + \beta}{2} = \pi - \frac{\gamma}{2} \):
\[ \cot\left(\pi - \frac{\gamma}{2}\right) = -\cot\left(\frac{\gamma}{2}\right) = \frac{\cot\left(\frac{\alpha}{2}\right)\cot\left(\frac{\beta}{2}\right) - 1}{\cot\left(\frac{\alpha}{2}\right) + \cot\left(\frac{\beta}{2}\right)} \]
Rearranging this equation:
\[ -\cot\left(\frac{\gamma}{2}\right)\left[\cot\left(\frac{\alpha}{2}\right) + \cot\left(\frac{\beta}{2}\right)\right] = \cot\left(\frac{\alpha}{2}\right)\cot\left(\frac{\beta}{2}\right) - 1 \] \[ -\cot\left(\frac{\alpha}{2}\right)\cot\left(\frac{\gamma}{2}\right) - \cot\left(\frac{\beta}{2}\right)\cot\left(\frac{\gamma}{2}\right) = \cot\left(\frac{\alpha}{2}\right)\cot\left(\frac{\beta}{2}\right) - 1 \]
Adding \( \cot\left(\frac{\alpha}{2}\right)\cot\left(\frac{\beta}{2}\right) \) to both sides and rearranging:
\[ \cot\left(\frac{\alpha}{2}\right)\cot\left(\frac{\beta}{2}\right) + \cot\left(\frac{\alpha}{2}\right)\cot\left(\frac{\gamma}{2}\right) + \cot\left(\frac{\beta}{2}\right)\cot\left(\frac{\gamma}{2}\right) = 1 \]
Therefore, the value of the given expression is 1.
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.