Given:
Step 1: Rewrite the equation using trigonometric identity: \[ p \cos \theta + q \sin \theta = \sqrt{p^2 + q^2} \cos(\theta - \alpha) \] where \( \alpha \) is an angle such that \( \cos \alpha = \frac{p}{\sqrt{p^2 + q^2}} \) and \( \sin \alpha = \frac{q}{\sqrt{p^2 + q^2}} \).
Step 2: Analyze the range of the left side: \[ -\sqrt{p^2 + q^2} \leq p \cos \theta + q \sin \theta \leq \sqrt{p^2 + q^2} \]
Step 3: Compare with the given condition \( |r| > \sqrt{p^2 + q^2} \):
Conclusion: The equation \( p \cos \theta + q \sin \theta = r \) has no real solution under the given condition.
The correct answer is (D) no real solution.
The given equation is:
\[ p\cos\theta + q\sin\theta = r \]
We can rewrite this equation using the auxiliary angle method. Let \( p = R\cos\phi \) and \( q = R\sin\phi \), where \( R = \sqrt{p^2 + q^2} \) and \( \phi = \arctan(q/p) \).
Then the equation becomes:
\[ R\cos\phi\cos\theta + R\sin\phi\sin\theta = r \] \[ R\cos(\theta - \phi) = r \] \[ \cos(\theta - \phi) = \frac{r}{R} = \frac{r}{\sqrt{p^2 + q^2}} \]
Since \( |r| > \sqrt{p^2 + q^2} \), we have \( \left|\frac{r}{R}\right| > 1 \).
However, the range of the cosine function is \([-1, 1]\).
Therefore, there are no real solutions for \( \theta \) in this case.
The equation has no solution.
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.