\(A = \begin{bmatrix} a & b & c \\[0.3em] d & e & f \\[0.3em] g & h & i \end{bmatrix}\)
\(A\begin{bmatrix} 1 \\[0.3em]1 \\[0.3em] 0 \end{bmatrix}\)=\(\begin{bmatrix} 1 \\[0.3em]1 \\[0.3em] 0 \end{bmatrix}\)⇒\(\begin{bmatrix} a & b & c \\[0.3em] d & e & f \\[0.3em] g & h & i \end{bmatrix}\)=\(\begin{bmatrix} 1 \\[0.3em]1 \\[0.3em] 0 \end{bmatrix}\)
\(⇒ a+b=1\)
\(⇒ d+e=1\)
\(⇒ g+h=0\)
\(A\begin{bmatrix} 1 \\[0.3em]0 \\[0.3em] 1 \end{bmatrix}\)=\(\begin{bmatrix} -1 \\[0.3em]0 \\[0.3em] 1 \end{bmatrix}\)⇒ \(\begin{bmatrix} a & b & c \\[0.3em] d & e & f \\[0.3em] g & h & i \end{bmatrix}\) \(\begin{bmatrix} 1 \\[0.3em]0 \\[0.3em] 1 \end{bmatrix}\)=\(\begin{bmatrix} -1 \\[0.3em]0 \\[0.3em] 1 \end{bmatrix}\)
\(⇒ a+c=−1\)
\(⇒ d+f=0\)
\(⇒ g+i=1\)
\(A\begin{bmatrix} 0 \\[0.3em]0 \\[0.3em] 1 \end{bmatrix}\)=\(\begin{bmatrix} 1 \\[0.3em]1 \\[0.3em] 2 \end{bmatrix}\) ⇒ \(\begin{bmatrix} a & b & c \\[0.3em] d & e & f \\[0.3em] g & h & i \end{bmatrix}\)\(\begin{bmatrix} 0 \\[0.3em]0 \\[0.3em] 1 \end{bmatrix}\)=
\(⇒c=1\)
\(⇒f=1\)
\(⇒ i=2\)
On solving,
\(a = –2, b = 3, c = 1, d = –1, e = 2, f = 1, g = –1,h = 1, i = 2\)
\(A = \begin{bmatrix} -2 & 3 & 1 \\[0.3em] -1 & 2 & 1 \\[0.3em] -1& 1 & 2 \end{bmatrix}\) \(⇒ A=2I\) \(\begin{bmatrix} -4 & 3 & 1 \\[0.3em] -1 & 0 & 1 \\[0.3em] -1& 1 & 0 \end{bmatrix}\)
\((A−2I)x=\)\(\begin{bmatrix} 4 \\[0.3em]1 \\[0.3em] 1 \end{bmatrix}\)
\(⇒ –4x_1 + 3x_2 + x_3 = 4\) …(i)
\(⇒ –x_1 + x_3 = 1\) …(ii)
\(⇒ –x_1 + x_2 = 1\) …(iii)
So 3(iii) + (ii) = (i)
∴ Infinite solution
So, the correct option (B): Infinitely many solutions.
If the matrix $ A $ is such that $ A \begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 1 \\ 7 & 7 \end{pmatrix} \text{ then } A \text{ is equal to} $
If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix} \quad \text{and} \quad A \, \text{adj} \, A = A A^t, \quad \text{then} \, 5a + b \, \text{is equal to}$
If $3A + 4B^{t} = \left( \begin{array}{cc} 7 & -10 \\ 0 & 6 \end{array} \right) $ and $ 2B - 3A^{t} = \left( \begin{array}{cc} -1 & 18 \\ 4 & -6 \\ -5 & -7 \end{array} \right) $, then find $ (5B)^{t}$:
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.