\(A = \begin{bmatrix} a & b & c \\[0.3em] d & e & f \\[0.3em] g & h & i \end{bmatrix}\)
\(A\begin{bmatrix} 1 \\[0.3em]1 \\[0.3em] 0 \end{bmatrix}\)=\(\begin{bmatrix} 1 \\[0.3em]1 \\[0.3em] 0 \end{bmatrix}\)⇒\(\begin{bmatrix} a & b & c \\[0.3em] d & e & f \\[0.3em] g & h & i \end{bmatrix}\)=\(\begin{bmatrix} 1 \\[0.3em]1 \\[0.3em] 0 \end{bmatrix}\)
\(⇒ a+b=1\)
\(⇒ d+e=1\)
\(⇒ g+h=0\)
\(A\begin{bmatrix} 1 \\[0.3em]0 \\[0.3em] 1 \end{bmatrix}\)=\(\begin{bmatrix} -1 \\[0.3em]0 \\[0.3em] 1 \end{bmatrix}\)⇒ \(\begin{bmatrix} a & b & c \\[0.3em] d & e & f \\[0.3em] g & h & i \end{bmatrix}\) \(\begin{bmatrix} 1 \\[0.3em]0 \\[0.3em] 1 \end{bmatrix}\)=\(\begin{bmatrix} -1 \\[0.3em]0 \\[0.3em] 1 \end{bmatrix}\)
\(⇒ a+c=−1\)
\(⇒ d+f=0\)
\(⇒ g+i=1\)
\(A\begin{bmatrix} 0 \\[0.3em]0 \\[0.3em] 1 \end{bmatrix}\)=\(\begin{bmatrix} 1 \\[0.3em]1 \\[0.3em] 2 \end{bmatrix}\) ⇒ \(\begin{bmatrix} a & b & c \\[0.3em] d & e & f \\[0.3em] g & h & i \end{bmatrix}\)\(\begin{bmatrix} 0 \\[0.3em]0 \\[0.3em] 1 \end{bmatrix}\)=
\(⇒c=1\)
\(⇒f=1\)
\(⇒ i=2\)
On solving,
\(a = –2, b = 3, c = 1, d = –1, e = 2, f = 1, g = –1,h = 1, i = 2\)
\(A = \begin{bmatrix} -2 & 3 & 1 \\[0.3em] -1 & 2 & 1 \\[0.3em] -1& 1 & 2 \end{bmatrix}\) \(⇒ A=2I\) \(\begin{bmatrix} -4 & 3 & 1 \\[0.3em] -1 & 0 & 1 \\[0.3em] -1& 1 & 0 \end{bmatrix}\)
\((A−2I)x=\)\(\begin{bmatrix} 4 \\[0.3em]1 \\[0.3em] 1 \end{bmatrix}\)
\(⇒ –4x_1 + 3x_2 + x_3 = 4\) …(i)
\(⇒ –x_1 + x_3 = 1\) …(ii)
\(⇒ –x_1 + x_2 = 1\) …(iii)
So 3(iii) + (ii) = (i)
∴ Infinite solution
So, the correct option (B): Infinitely many solutions.
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.
