Question:

Let \(X = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{bmatrix}\),
Y = αI + βX + γX2 and
Z = α²l - αβX + (β² - αϒ)X² ,α,β,ϒ ∈ R.
If \(Y^{-1} = \begin{bmatrix} \frac{1}{5} & -\frac{2}{5} & \frac{1}{5} \\ 0 & \frac{1}{5} & -\frac{2}{5} \\ 0 & 0 & \frac{1}{5} \\ \end{bmatrix}\),
then ( α - β + ϒ )² is equal to ________.

Updated On: Mar 20, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 100

Solution and Explanation

The correct answer is 100
\(∵ \)\(X = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{bmatrix}\)
\(∴\) \(X^2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix}\)
\(∴ Y = αl + βX + γX² =\) \(\begin{bmatrix} \alpha & \beta & \gamma \\ 0 & \alpha & \beta \\ 0 & 0 & \alpha \\ \end{bmatrix}\)
∵ γ.γ-1 = l
\(∴\) \(\begin{bmatrix} \alpha & \beta & \gamma \\ 0 & \alpha & \beta \\ 0 & 0 & \alpha \\ \end{bmatrix} \begin{bmatrix} \frac{1}{5} & -\frac{2}{5} & \frac{1}{5} \\ 0 & \frac{1}{5} & -\frac{2}{5} \\ 0 & 0 & \frac{1}{5} \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}\)
∴ \(\begin{bmatrix} \frac{\alpha}{5} & \beta - \frac{2\alpha}{5} & \alpha - \frac{2\beta + \gamma}{5} \\ 0 & \frac{\alpha}{5} & \beta - \frac{2\alpha}{5} \\ 0 & 0 & \frac{\alpha}{5} \\ \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}\)
\(∴ α = 5, β = 10 , γ = 15\)
Therefore ,  \(( α - β - γ )² = 100\)
 

Was this answer helpful?
0
0

Concepts Used:

Matrices

Matrix:

A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.

The basic operations that can be performed on matrices are:

  1. Addition of Matrices - The addition of matrices addition can only be possible if the number of rows and columns of both the matrices are the same.
  2. Subtraction of Matrices - Matrices subtraction is also possible only if the number of rows and columns of both the matrices are the same.
  3. Scalar Multiplication - The product of a matrix A with any number 'c' is obtained by multiplying every entry of the matrix A by c, is called scalar multiplication. 
  4. Multiplication of Matrices - Matrices multiplication is defined only if the number of columns in the first matrix and rows in the second matrix are equal. 
  5. Transpose of Matrices - Interchanging of rows and columns is known as the transpose of matrices.