Let \(X = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{bmatrix}\),
Y = αI + βX + γX2 and
Z = α²l - αβX + (β² - αϒ)X² ,α,β,ϒ ∈ R.
If \(Y^{-1} = \begin{bmatrix} \frac{1}{5} & -\frac{2}{5} & \frac{1}{5} \\ 0 & \frac{1}{5} & -\frac{2}{5} \\ 0 & 0 & \frac{1}{5} \\ \end{bmatrix}\),
then ( α - β + ϒ )² is equal to ________.
The correct answer is 100
\(∵ \)\(X = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{bmatrix}\)
\(∴\) \(X^2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix}\)
\(∴ Y = αl + βX + γX² =\) \(\begin{bmatrix} \alpha & \beta & \gamma \\ 0 & \alpha & \beta \\ 0 & 0 & \alpha \\ \end{bmatrix}\)
∵ γ.γ-1 = l
\(∴\) \(\begin{bmatrix} \alpha & \beta & \gamma \\ 0 & \alpha & \beta \\ 0 & 0 & \alpha \\ \end{bmatrix} \begin{bmatrix} \frac{1}{5} & -\frac{2}{5} & \frac{1}{5} \\ 0 & \frac{1}{5} & -\frac{2}{5} \\ 0 & 0 & \frac{1}{5} \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}\)
∴ \(\begin{bmatrix} \frac{\alpha}{5} & \beta - \frac{2\alpha}{5} & \alpha - \frac{2\beta + \gamma}{5} \\ 0 & \frac{\alpha}{5} & \beta - \frac{2\alpha}{5} \\ 0 & 0 & \frac{\alpha}{5} \\ \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}\)
\(∴ α = 5, β = 10 , γ = 15\)
Therefore , \(( α - β - γ )² = 100\)
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.