\(A = \begin{bmatrix} 0 & -2 \\[0.3em] 2 & 0 \end{bmatrix}\)
\(A^2 = \begin{bmatrix} 0 & -2 \\[0.3em] 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & -2 \\[0.3em] 2 & 0 \end{bmatrix}\)=\( \begin{bmatrix} -4 & 0 \\[0.3em] 0 & -4 \end{bmatrix}\)=\(−4I\)
\(M = A_2 + A_4 + A_6 + … + A^{20}\)
\(= –4I + 16l – 64I + …\) upto \(10\) terms
\(= –I [4 – 16 + 64 … + \)upto \(10\) terms\(]\)
\(=−I⋅4[\frac {(−4)^{10}−1}{−4−1}]\)
\(=\frac 45(2^{20}−1)I\)
\(= A – 4A + 16A + …\) upto \(10\) terms
\(=A[\frac {(−4)^{10}−1}{−4−1}]\)
\(=−(\frac {2^{20}−1}{5})A\)
\(N^2=\frac {(2^{20}−1)^2}{2^5}\)
\(A^2=−\frac {4}{25}(2^{20}−1)^2t\)
\(MN^{2}=−\frac {16}{125}(2^{20}−1)^3 \)
\(I=KI\ (K≠±1)\)
\((MN^2)^T = (KI)^T = KI\)
∴ \(A\) is correct
So, the correct option is (A): a non-identity symmetric matrix.
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.