Question:

Let \(A = \begin{bmatrix} 0 & -2 \\[0.3em] 2 & 0 \end{bmatrix}\). If \(M\) and \(N\) are two matrices given by \(M = \displaystyle\sum_{k=1}^{10} A^{2k}\) and \(N = \displaystyle\sum_{k=1}^{10} A^{2k-1}\)
then \(MN^2 \) is :

Updated On: Mar 20, 2025
  • a non-identity symmetric matrix
  • a skew-symmetric matrix
  • neither symmetric nor skew-symmetric matrix
  • an identity matrix
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

\(A = \begin{bmatrix} 0 & -2 \\[0.3em] 2 & 0 \end{bmatrix}\)
\(A^2 = \begin{bmatrix} 0 & -2 \\[0.3em]  2 & 0 \end{bmatrix} \begin{bmatrix} 0 & -2 \\[0.3em] 2 & 0 \end{bmatrix}\)=\( \begin{bmatrix} -4 & 0 \\[0.3em] 0 & -4 \end{bmatrix}\)=\(−4I\)
\(M = A_2 + A_4 + A_6 + … + A^{20}\)
\(= –4I + 16l – 64I + …\) upto \(10\) terms
\(= –I [4 – 16 + 64 … + \)upto \(10\) terms\(]\)
\(=−I⋅4[\frac {(−4)^{10}−1}{−4−1}]\)
\(=\frac 45(2^{20}−1)I\)
\(= A – 4A + 16A + …\) upto \(10\) terms
\(=A[\frac {(−4)^{10}−1}{−4−1}]\)

\(=−(\frac {2^{20}−1}{5})A\)

\(N^2=\frac {(2^{20}−1)^2}{2^5}\)

\(A^2=−\frac {4}{25}(2^{20}−1)^2t\)

\(MN^{2}=−\frac {16}{125}(2^{20}−1)^3 \)
\(I=KI\  (K≠±1)\)
\((MN^2)^T = (KI)^T = KI\)
∴ \(A\) is correct

So, the correct option is (A): a non-identity symmetric matrix.

Was this answer helpful?
0
0

Concepts Used:

Matrices

Matrix:

A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.

The basic operations that can be performed on matrices are:

  1. Addition of Matrices - The addition of matrices addition can only be possible if the number of rows and columns of both the matrices are the same.
  2. Subtraction of Matrices - Matrices subtraction is also possible only if the number of rows and columns of both the matrices are the same.
  3. Scalar Multiplication - The product of a matrix A with any number 'c' is obtained by multiplying every entry of the matrix A by c, is called scalar multiplication. 
  4. Multiplication of Matrices - Matrices multiplication is defined only if the number of columns in the first matrix and rows in the second matrix are equal. 
  5. Transpose of Matrices - Interchanging of rows and columns is known as the transpose of matrices.