Concept:
Cross product of vectors is found using the determinant method.
Dot product is computed as the sum of products of corresponding components.
Step 1: Write vectors in component form.
\[
\vec{a} = (-1,\,1,\,2), \quad
\vec{b} = (2,\,-1,\,1)
\]
Step 2: Compute \( \vec{c} = \vec{a} \times \vec{b} \).
\[
\vec{c} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}
-1 & 1 & 2
2 & -1 & 1
\end{vmatrix}
\]
\[
\vec{c} = \hat{i}(1\cdot1 - 2\cdot(-1))
- \hat{j}((-1)\cdot1 - 2\cdot2)
+ \hat{k}((-1)\cdot(-1) - 1\cdot2)
\]
\[
\vec{c} = 3\hat{i} + 5\hat{j} - \hat{k}
\]
Step 3: Compute \( \vec{d} = \vec{c} \times \vec{b} \).
\[
\vec{d} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}
3 & 5 & -1
2 & -1 & 1
\end{vmatrix}
\]
\[
\vec{d} = \hat{i}(5\cdot1 - (-1)\cdot(-1))
- \hat{j}(3\cdot1 - (-1)\cdot2)
+ \hat{k}(3\cdot(-1) - 5\cdot2)
\]
\[
\vec{d} = 4\hat{i} - 5\hat{j} - 13\hat{k}
\]
Step 4: Compute \( \vec{a}-\vec{b} \).
\[
\vec{a}-\vec{b} = (-1-2,\,1-(-1),\,2-1) = (-3,\,2,\,1)
\]
Step 5: Compute the dot product.
\[
(\vec{a}-\vec{b}) \cdot \vec{d}
= (-3)(4) + (2)(-5) + (1)(-13)
\]
\[
= -12 - 10 - 13 = -35
\]