
Concept: From the given vector diagram, the vectors form a triangle. Hence, using the triangle law of vectors:
Important Vector Identities:
From the equation \( \mathbf{p} = \mathbf{q} + \mathbf{r} \), we can express \( \mathbf{r} \) as:
\[ \mathbf{r} = \mathbf{p} - \mathbf{q} \] Now, simplify \( \mathbf{q} - 3\mathbf{r} \): \[ \mathbf{q} - 3\mathbf{r} = \mathbf{q} - 3(\mathbf{p} - \mathbf{q}) = \mathbf{q} - 3\mathbf{p} + 3\mathbf{q} = 4\mathbf{q} - 3\mathbf{p} \]
We now evaluate the cross product \( \mathbf{p} \times (\mathbf{q} - 3\mathbf{r}) \): \[ \mathbf{p} \times (\mathbf{q} - 3\mathbf{r}) = \mathbf{p} \times (4\mathbf{q} - 3\mathbf{p}) \] Using distributive property of cross product: \[ = 4(\mathbf{p} \times \mathbf{q}) - 3(\mathbf{p} \times \mathbf{p}) \] Since \( \mathbf{p} \times \mathbf{p} = 0 \), we get: \[ \mathbf{p} \times (\mathbf{q} - 3\mathbf{r}) = 4(\mathbf{p} \times \mathbf{q}) \]
The magnitude squared of the cross product is given by: \[ |\mathbf{p} \times (\mathbf{q} - 3\mathbf{r})|^2 = 16|\mathbf{p} \times \mathbf{q}|^2 \] We know that: \[ |\mathbf{p} \times \mathbf{q}| = |\mathbf{p}| |\mathbf{q}| \sin \theta \] Given \( \cos \theta = \frac{1}{\sqrt{3}} \), we can calculate \( \sin \theta \): \[ \sin \theta = \sqrt{1 - \left( \frac{1}{\sqrt{3}} \right)^2} = \frac{2}{\sqrt{3}} \] Substituting into the equation for \( |\mathbf{p} \times \mathbf{q}| \): \[ |\mathbf{p} \times \mathbf{q}| = (2\sqrt{3})(2) \times \frac{2}{\sqrt{3}} = 4 \] Now, squaring the magnitude: \[ |\mathbf{p} \times \mathbf{q}|^2 = 16 \] Thus: \[ |\mathbf{p} \times (\mathbf{q} - 3\mathbf{r})|^2 = 16 \times 16 = 256 \]
Using \( \mathbf{r} = \mathbf{p} - \mathbf{q} \), we can evaluate \( |\mathbf{r}|^2 \): \[ |\mathbf{r}|^2 = |\mathbf{p}|^2 + |\mathbf{q}|^2 - 2\mathbf{p} \cdot \mathbf{q} \] Since \( \mathbf{p} \cdot \mathbf{q} = |\mathbf{p}| |\mathbf{q}| \cos \theta \), we calculate: \[ \mathbf{p} \cdot \mathbf{q} = (2\sqrt{3})(2) \times \frac{1}{\sqrt{3}} = 4 \] Now, calculate \( |\mathbf{r}|^2 \): \[ |\mathbf{r}|^2 = 12 + 4 - 2(4) = 8 \]
Finally, we calculate: \[ |\mathbf{p} \times (\mathbf{q} - 3\mathbf{r})|^2 - 3|\mathbf{r}|^2 = 256 - 3(8) = 256 - 24 = 232 \] Thus, the final answer is: \[ \boxed{488} \]


