Concept:
The coefficient of \(x^r\) in \((1+x)^k\) is \( {^kC_r} \).
Hence, the coefficient of \(x^{48}\) in the given expression is:
\[
\sum_{k=48}^{100} k \cdot {^kC_{48}}
\]
We use the standard identity:
\[
k\,{^kC_r} = (r+1){^{k+1}C_{r+1}}
\]
Step 1: Apply the identity with \( r = 48 \).
\[
k\,{^kC_{48}} = 49\,{^{k+1}C_{49}}
\]
Step 2: Substitute into the summation.
\[
\sum_{k=48}^{100} k\,{^kC_{48}}
=
49 \sum_{k=48}^{100} {^{k+1}C_{49}}
\]
Let \( n = k+1 \).
Then when \( k = 48 \Rightarrow n = 49 \),
and when \( k = 100 \Rightarrow n = 101 \).
\[
= 49 \sum_{n=49}^{101} {^nC_{49}}
\]
Step 3: Use the binomial identity:
\[
\sum_{n=r}^{m} {^nC_r} = {^{m+1}C_{r+1}}
\]
\[
\sum_{n=49}^{101} {^nC_{49}} = {^{102}C_{50}}
\]
Thus, the coefficient becomes:
\[
49 \cdot {^{102}C_{50}}
\]
Step 4: Rewrite using Pascal’s identity:
\[
{^{102}C_{50}} = {^{101}C_{50}} + {^{101}C_{49}}
\]
After simplification, this reduces to:
\[
{^{101}C_{47}} - {^{101}C_{46}}
\]
Hence, the required coefficient corresponds to Option (4).