Step 1: Use given vector equation.
\[
2(\vec a \times \vec c)+3(\vec b \times \vec c)=0
\]
\[
(2\vec a+3\vec b)\times\vec c=0
\]
Step 2: Find $2\vec a+3\vec b$.
\[
2\vec a+3\vec b=2(2,-5,5)+3(1,-1,3)
\]
\[
=(7,-13,19)
\]
Step 3: Write $\vec c$ proportional to this vector.
\[
\vec c=\lambda(7,-13,19)
\]
Step 4: Use dot product condition.
\[
(\vec a-\vec b)\cdot\vec c=-97
\]
\[
(1,-4,2)\cdot\lambda(7,-13,19)=-97
\]
\[
\lambda(7+52+38)=-97
\]
\[
\lambda=-1
\]
Step 5: Find $\vec c$.
\[
\vec c=(-7,13,-19)
\]
Step 6: Compute $|\vec c\times\vec k|^2$.
\[
\vec c\times\vec k=(-7,13,0)
\]
\[
|\vec c\times\vec k|^2=49+169=218
\]
Final conclusion.
The required value is 218.