Step 1: Evaluate $f(0)$.
For $a=0$:
\[
y=| -5|-|1|+0=5-1=4
\]
Area between $y=x^2$ and $y=4$ from $0$ to $1$:
\[
f(0)=\int_0^1(4-x^2)\,dx
\]
\[
=\left[4x-\frac{x^3}{3}\right]_0^1=\frac{11}{3}
\]
Step 2: Evaluate $f(1)$.
For $a=1$:
\[
y=|x-5|-|1-x|+x^2
\]
In first quadrant $0\le x\le1$:
\[
|x-5|=5-x,\quad |1-x|=1-x
\]
\[
y=5-x-(1-x)+x^2=4+x^2
\]
Area between $y=x^2$ and $y=4+x^2$:
\[
f(1)=\int_0^1 4\,dx=4
\]
Step 3: Final calculation.
\[
f(0)+f(1)=\frac{11}{3}+4=\frac{23}{3}
\]
Final conclusion.
The required value is $\dfrac{23}{3}$.