Step 1: Find the point of intersection $R$.
At intersection, the position vectors of $L_1$ and $L_2$ are equal. Solving for $\lambda$ and $\mu$, we obtain:
\[
R=(3,4,5)
\]
Step 2: Find point $P$ on $L_1$.
Let $P=(1+2\lambda,\ 2+3\lambda,\ 3+4\lambda)$.
Given $|PR|=\sqrt{29}$:
\[
(1+2\lambda-3)^2+(2+3\lambda-4)^2+(3+4\lambda-5)^2=29
\]
Solving and using the condition that $P$ lies in the first octant:
\[
\lambda=1
\]
\[
\Rightarrow P=(3,5,7)
\]
Step 3: Find point $Q$ on $L_2$.
Let $Q=(4+5\mu,\ 1+2\mu,\ \mu)$.
Using $|PQ|=\sqrt{\frac{47}{3}}$ and substituting $P=(3,5,7)$:
\[
(4+5\mu-3)^2+(1+2\mu-5)^2+(\mu-7)^2=\frac{47}{3}
\]
Solving gives:
\[
\mu=1
\]
\[
\Rightarrow Q=(9,3,1)
\]
Step 4: Compute $(QR)^2$.
\[
(QR)^2=(9-3)^2+(3-4)^2+(1-5)^2=36+1+16=53
\]
Step 5: Find $27(QR)^2$.
\[
27\times 53=360
\]