Let the solution curve y = y(x) of the differential equation (4 + x2)dy – 2x(x2 + 3y + 4)dx = 0 pass through the origin. Then y(2) is equal to _______.
Let P be the plane passing through the intersection of the planes
r→.(i+3k−k)=5 and r→ .(2i−j+k)=3,
and the point (2, 1, –2). Let the position vectors of the points X and Y be
i−2j+4k and 5i−j+2k
respectively. Then the points
From the top of a tower, a ball is thrown vertically upward which reaches the ground in 6 s. A second ball thrown vertically downward from the same position with the same speed reaches the ground in 1.5 s. A third ball released, from the rest from the same location, will reach the ground in ____ s.
The plane passing through the line L :lx – y + 3(1 – l) z = 1, x + 2y – z = 2 and perpendicular to the plane 3x + 2y + z = 6 is 3x – 8y + 7z = 4. If θ is the acute angle between the line L and the y-axis, then 415 cos2θ is equal to ________.
The system of equations
–kx + 3y – 14z = 25
–15x + 4y – kz = 3
–4x + y + 3z = 4
is consistent for all k in the set
For real number a, b (a > b > 0), let\(\text{{Area}} \left\{ (x, y) : x^2 + y^2 \leq a^2 \text{{ and }} \frac{x^2}{a^2} + \frac{y^2}{b^2} \geq 1 \right\} = 30\pi\)and \(\text{{Area}} \left\{ (x, y) : x^2 + y^2 \geq b^2 \text{{ and }} \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \right\} = 18\pi\)Then the value of (a – b)2 is equal to _____.