Given,
f(x)=(x2−2x+7)f1(x) e(4x3−12x2−180x+31)f2(x)
f1(x) = x2 – 2x + 7
f1′(z)=2z−2,
so f(x) is decreasing in [–3, 0]
and positive also
f2(x)=e4x3−12x2−180x+31
f2‘(x)=e4x3−12x2−180x+31.12x2–24x–180
=12(x−5)(x+3)x4x3−12x2−180x+31
So, f2(x) is also decreasing and positive in {–3, 0}
∴ absolute maximum value of f(x) occurs at x = –3
∴ α = -3
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
If some other quantity ‘y’ causes some change in a quantity of surely ‘x’, in view of the fact that an equation of the form y = f(x) gets consistently pleased, i.e, ‘y’ is a function of ‘x’ then the rate of change of ‘y’ related to ‘x’ is to be given by
\(\frac{\triangle y}{\triangle x}=\frac{y_2-y_1}{x_2-x_1}\)
This is also known to be as the Average Rate of Change.
Consider y = f(x) be a differentiable function (whose derivative exists at all points in the domain) in an interval x = (a,b).
Read More: Application of Derivatives