Given,
f(x)=(x2−2x+7)f1(x) e(4x3−12x2−180x+31)f2(x)
f1(x) = x2 – 2x + 7
f1′(z)=2z−2,
so f(x) is decreasing in [–3, 0]
and positive also
f2(x)=e4x3−12x2−180x+31
f2‘(x)=e4x3−12x2−180x+31.12x2–24x–180
=12(x−5)(x+3)x4x3−12x2−180x+31
So, f2(x) is also decreasing and positive in {–3, 0}
∴ absolute maximum value of f(x) occurs at x = –3
∴ α = -3
A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(i)} Express the distance \( y \) between the wall and foot of the ladder in terms of \( h \) and height \( x \) on the wall at a certain instant. Also, write an expression in terms of \( h \) and \( x \) for the area \( A \) of the right triangle, as seen from the side by an observer.
A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?
A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (a) Show that the area \( A \) of the right triangle is maximum at the critical point.
A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(ii)} Find the derivative of the area \( A \) with respect to the height on the wall \( x \), and find its critical point.
If some other quantity ‘y’ causes some change in a quantity of surely ‘x’, in view of the fact that an equation of the form y = f(x) gets consistently pleased, i.e, ‘y’ is a function of ‘x’ then the rate of change of ‘y’ related to ‘x’ is to be given by
\(\frac{\triangle y}{\triangle x}=\frac{y_2-y_1}{x_2-x_1}\)
This is also known to be as the Average Rate of Change.
Consider y = f(x) be a differentiable function (whose derivative exists at all points in the domain) in an interval x = (a,b).
Read More: Application of Derivatives