\(x^3 = θ ⇒ \frac{θ}{2} ∈\bigg(\frac{π}{4}, \frac{3π}{4}\bigg)\)
\(∴ y = tan^{–1} (secθ – tanθ)\)
= \(tan^{−1}(\frac{1−sinθ}{cos θ} )\)
\(∴y=\frac{π}{4}−\frac{θ}{2}.\)
\(y=\frac{π}{4}−\frac{x^3}{2}\)
\(∴y′=\frac{−3x^2}{2}\)
\(y'' = – 3x\)
\(∴ x^2y''-6y+\frac{3π}{2}=0\)
Hence, the correct option is (B): \(x^2y''-6y+\frac{3π}{2}\)
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
| Trigonometrical equations | General Solutions |
| sin θ = 0 | θ = nπ |
| cos θ = 0 | θ = (nπ + π/2) |
| cos θ = 0 | θ = nπ |
| sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
| cos θ = 1 | θ = 2nπ |
| sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
| cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
| tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
| sin 2θ = sin 2α | θ = nπ ± α |
| cos 2θ = cos 2α | θ = nπ ± α |
| tan 2θ = tan 2α | θ = nπ ± α |