Let f : R → R be a continuous function satisfying f(x) + f(x + k) = n, for all x ∈ R where k > 0 and n is a positive integer. If \(l_1 = \int_{0}^{4nk} f(x) \, dx\) and \(l_2 = \int_{-k}^{3k} f(x) \, dx\), then
Let for n = 1, 2, …, 50, Sn be the sum of the infinite geometric progression whose first term is n2 and whose common ratio is \(\frac{1}{(n+1)^2}\) . Then the value of \(\frac{1}{26} + \sum_{n=1}^{50} \left(S_n+\frac{2}{n+1}-n-1 \right)\) is equal to ________.
If A =\(\sum_{n=1}^{\infty}\)\(\frac{1}{( 3 + (-1)^n)^n}\) and B = \(\sum_{n=1}^{\infty}\) \(\frac{(-1)^n}{( 3 + (-1)^n)^n}\) , then A/B is equal to :
If the lines\(\stackrel{→}{r}= ( \hat{i} - \hat{j} + \hat{k} ) + λ (\hat{3j} - \hat{k} )= ( \hat{i} - \hat{j} + \hat{k} ) + λ (\hat{3j} - \hat{k} )\)and\(\stackrel{→}{r} = ( \alpha \hat{i} - \hat{j} ) + μ( \hat{2j} - \hat{3k} )\)are co-planer , then the distance of the plane containing these two lines from the point \(( α , 0 , 0 )\) is :