The correct option is(B): 16 : 9.
\(=\frac{U_A}{U_B}=\frac{mA}{m_B}×\frac{r_B}{r_A}\)
\(=\frac{4}{3}×\frac{4}{3}\)
\(\frac{16}{9}\)
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
The work which a body needs to do, against the force of gravity, in order to bring that body into a particular space is called Gravitational potential energy. The stored is the result of the gravitational attraction of the Earth for the object. The GPE of the massive ball of a demolition machine depends on two variables - the mass of the ball and the height to which it is raised. There is a direct relation between GPE and the mass of an object. More massive objects have greater GPE. Also, there is a direct relation between GPE and the height of an object. The higher that an object is elevated, the greater the GPE. The relationship is expressed in the following manner:
PEgrav = mass x g x height
PEgrav = m x g x h
Where,
m is the mass of the object,
h is the height of the object
g is the gravitational field strength (9.8 N/kg on Earth) - sometimes referred to as the acceleration of gravity.