The correct answer is (D) : 152.7°C
\(ΔD = DαΔT\)
\(ΔT = \frac{0.011}{6.230 × 1.4 × 10^{-5}}\)
= 126.11°C
\(⇒ T_f = T + ΔT\)
= (27 + 126.11)°C
= 153.11°C
Therefore , 153.11 is nearest to the 152.7
If \( S \) and \( S' \) are the foci of the ellipse \[ \frac{x^2}{18} + \frac{y^2}{9} = 1 \] and \( P \) is a point on the ellipse, then \[ \min (SP \cdot S'P) + \max (SP \cdot S'P) \] is equal to:

Given below are two statements I and II.
Statement I: Dumas method is used for estimation of "Nitrogen" in an organic compound.
Statement II: Dumas method involves the formation of ammonium sulfate by heating the organic compound with concentrated H\(_2\)SO\(_4\). In the light of the above statements, choose the correct answer from the options given below:
Considering Bohr’s atomic model for hydrogen atom :
(A) the energy of H atom in ground state is same as energy of He+ ion in its first excited state.
(B) the energy of H atom in ground state is same as that for Li++ ion in its second excited state.
(C) the energy of H atom in its ground state is same as that of He+ ion for its ground state.
(D) the energy of He+ ion in its first excited state is same as that for Li++ ion in its ground state.
Thermal expansion is the tendency of matter to change its shape, area, and volume in response to a change in temperature. Temperature is a monotonic function of the average molecular kinetic energy of a substance.
The expansion of the solid material is taken to be the linear expansion coefficient, as the expansion takes place in terms of height, thickness and length. The gaseous and liquid expansion takes the volume expansion coefficient. Normally, if the material is fluid, we can explain the changes in terms of volume change.
The bonding force among the molecules and atoms differs from material to material. These characteristics of the compounds and elements are known as the expansion coefficient.
