The correct answer is 8630
Wrev = –2.303 nRT log10 (V2/V1)
= –2.303 × 5 × 8.3 × 300 × log10(20/10)
≈ –8630 J

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In thermodynamics, work is a way of energy transfer from a system to surroundings, under the influence of external factors such gravity, electromagnetic forces, pressure/volume etc.
Energy (ΔU) can cross the boundary of a system in two forms -> Work (W) and Heat (q). Both work and heat refer to processes by which energy is transferred to or from a substance.
ΔU=W+q
Work done by a system is defined as the quantity of energy exchanged between a system and its surroundings. It is governed by external factors such as an external force, pressure or volume or change in temperature etc.
Work (W) in mechanics is displacement (d) against a resisting force (F).
Work has units of energy (Joule, J)