Solution:
The given equations are:
\[
\frac{x}{1} = \frac{y - 6}{-2} = \frac{z + 8}{5} = \lambda \quad \text{(1)}
\]
\[
\frac{x - 5}{4} = \frac{y - 7}{3} = \frac{z + 2}{1} = \mu \quad \text{(2)}
\]
\[
\frac{x + 3}{6} = \frac{3 - y}{3} = \frac{z - 6}{1} = \gamma \quad \text{(3)}
\]
For intersection of (1) and (2), solving the system gives:
\[
\lambda = -1, \mu = -1, \quad A(1, 4, -3).
\]
For intersection of (1) and (3), solving the system gives:
\[
\lambda = 3, \gamma = 1, \quad B(0, 7, 7).
\]
The midpoint of \( A(1, 4, -3) \) and \( B(0, 7, 7) \) is:
\[
\left( \frac{1+0}{2}, \frac{4+7}{2}, \frac{-3+7}{2} \right) = (0.5, 5.5, 2)
\]
Now, calculate the perpendicular distance from the plane \( 2x - 2y + z = 14 \):
\[
\frac{|2(0.5) - 2(5.5) + 2 - 14|}{\sqrt{2^2 + (-2)^2 + 1^2}} = \frac{|1 - 11 + 2 - 14|}{\sqrt{4 + 4 + 1}} = \frac{|-22|}{3} = 4.
\]
Thus, the distance is \( 4 \).