Among the statements :
\((S1)\) \((( p \vee q ) \Rightarrow r ) \Leftrightarrow( p \Rightarrow r )\)
\((S2)\)\((( p \vee q ) \Rightarrow r ) \Leftrightarrow(( p \Rightarrow r ) \vee( q \Rightarrow r ))\)
We will evaluate the truth values of the given statements \(S_1\) and \(S_2\) for different truth values of \(p\), \(q\), and \(r\). The truth table is as follows:
\(p\) | \(q\) | \(r\) | \(p \lor q\) | \((p \lor q) \Rightarrow r\) | \(p \Rightarrow r\) | \((p \lor q) \Rightarrow r \Leftrightarrow p \Rightarrow r\) | \((p \lor q) \Rightarrow r \Leftrightarrow (p \Rightarrow r) \lor (q \Rightarrow r)\) |
---|---|---|---|---|---|---|---|
T | T | T | T | T | T | T | T |
T | T | F | T | F | F | T | T |
T | F | T | T | T | T | T | T |
T | F | F | T | F | F | T | T |
F | T | T | T | T | T | T | T |
F | T | F | T | F | T | T | T |
F | F | T | F | T | T | T | T |
F | F | F | F | T | T | T | T |
For statement \(S_1\), the truth table shows that \((p \lor q) \Rightarrow r \Leftrightarrow p \Rightarrow r\) is not true for all cases. Specifically, it is false when \(p = \text{T}, q = \text{T}, r = \text{F}\).
For statement \(S_2\), \((p \lor q) \Rightarrow r \Leftrightarrow (p \Rightarrow r) \lor (q \Rightarrow r)\) is also not a tautology because it is not true in all cases.
Neither \(S_1\) nor \(S_2\) is a tautology.
Therefore, the correct answer is:
\[ \boxed{4}. \]
Mathematical reasoning or the principle of mathematical reasoning is a part of mathematics where we decide the truth values of the given statements. These reasoning statements are common in most competitive exams like JEE and the questions are extremely easy and fun to solve.
Mathematically, reasoning can be of two major types such as: