Among the statements :
\((S1)\) \((( p \vee q ) \Rightarrow r ) \Leftrightarrow( p \Rightarrow r )\)
\((S2)\)\((( p \vee q ) \Rightarrow r ) \Leftrightarrow(( p \Rightarrow r ) \vee( q \Rightarrow r ))\)
We will evaluate the truth values of the given statements \(S_1\) and \(S_2\) for different truth values of \(p\), \(q\), and \(r\). The truth table is as follows:
| \(p\) | \(q\) | \(r\) | \(p \lor q\) | \((p \lor q) \Rightarrow r\) | \(p \Rightarrow r\) | \((p \lor q) \Rightarrow r \Leftrightarrow p \Rightarrow r\) | \((p \lor q) \Rightarrow r \Leftrightarrow (p \Rightarrow r) \lor (q \Rightarrow r)\) |
|---|---|---|---|---|---|---|---|
| T | T | T | T | T | T | T | T |
| T | T | F | T | F | F | T | T |
| T | F | T | T | T | T | T | T |
| T | F | F | T | F | F | T | T |
| F | T | T | T | T | T | T | T |
| F | T | F | T | F | T | T | T |
| F | F | T | F | T | T | T | T |
| F | F | F | F | T | T | T | T |
For statement \(S_1\), the truth table shows that \((p \lor q) \Rightarrow r \Leftrightarrow p \Rightarrow r\) is not true for all cases. Specifically, it is false when \(p = \text{T}, q = \text{T}, r = \text{F}\).
For statement \(S_2\), \((p \lor q) \Rightarrow r \Leftrightarrow (p \Rightarrow r) \lor (q \Rightarrow r)\) is also not a tautology because it is not true in all cases.
Neither \(S_1\) nor \(S_2\) is a tautology.
Therefore, the correct answer is:
\[ \boxed{4}. \]

Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
Mathematical reasoning or the principle of mathematical reasoning is a part of mathematics where we decide the truth values of the given statements. These reasoning statements are common in most competitive exams like JEE and the questions are extremely easy and fun to solve.
Mathematically, reasoning can be of two major types such as: