Step 1: Compute \( \vec{a} \times \vec{b} \) The given vectors are: \[ \vec{a} = 2\hat{i} + 7\hat{j} - \hat{k}, \quad \vec{b} = 3\hat{i} + 5\hat{k}, \quad \vec{c} = \hat{i} - \hat{j} + 2\hat{k} \] The cross product \( \vec{a} \times \vec{b} \) is: \[ \vec{a} \times \vec{b} = \left| \begin{matrix} \hat{i} & \hat{j} & \hat{k} 2 & 7 & -1 3 & 0 & 5 \end{matrix} \right| = \hat{i}(7 \times 5 - (-1) \times 0) - \hat{j}(2 \times 5 - (-1) \times 3) + \hat{k}(2 \times 0 - 7 \times 3) \] \[ = \hat{i}(35) - \hat{j}(10 + 3) + \hat{k}(-21) = 35\hat{i} - 13\hat{j} - 21\hat{k} \] Thus, \[ \vec{a} \times \vec{b} = 35\hat{i} - 13\hat{j} - 21\hat{k} \]
Step 2: Solve for \( \lambda \)
We are given that \( \vec{c} \cdot \vec{d} = 12 \), and \( \vec{d} = \lambda (\vec{a} \times \vec{b}) \), so we substitute: \[ \vec{c} \cdot \vec{d} = (\hat{i} - \hat{j} + 2\hat{k}) \cdot \lambda (35\hat{i} - 13\hat{j} - 21\hat{k}) = 12 \] \[ \lambda (35 - (-13) + 2 \times (-21)) = 12 \] \[ \lambda (35 + 13 - 42) = 12 \] \[ \lambda (6) = 12 \] \[ \lambda = 2 \] Thus, \( \vec{d} = 2 (35\hat{i} - 13\hat{j} - 21\hat{k}) = 70\hat{i} - 26\hat{j} - 42\hat{k} \).
Step 3: Compute \( (\hat{i} + \hat{j} - \hat{k}) \cdot (\vec{c} \times \vec{d}) \)
\ Next, we compute \( \vec{c} \times \vec{d} \): \[ \vec{c} \times \vec{d} = \left| \begin{matrix} \hat{i} & \hat{j} & \hat{k} 1 & -1 & 2 70 & -26 & -42 \end{matrix} \right| \] \[ = \hat{i}((-1)(-42) - 2(-26)) - \hat{j}(1(-42) - 2(70)) + \hat{k}(1(-26) - (-1)(70)) \] \[ = \hat{i}(42 + 52) - \hat{j}(-42 - 140) + \hat{k}(-26 + 70) \] \[ = \hat{i}(94) - \hat{j}(-182) + \hat{k}(44) \] \[ = 94\hat{i} + 182\hat{j} + 44\hat{k} \] Finally, compute the dot product: \[ (\hat{i} + \hat{j} - \hat{k}) \cdot (94\hat{i} + 182\hat{j} + 44\hat{k}) = 1 \times 94 + 1 \times 182 - 1 \times 44 \] \[ = 94 + 182 - 44 = 232 \] Thus, the required value is \( \boxed{44} \).
Match the LIST-I with LIST-II
| LIST-I (Expressions) | LIST-II (Values) | ||
|---|---|---|---|
| A. | \( i^{49} \) | I. | 1 |
| B. | \( i^{38} \) | II. | \(-i\) |
| C. | \( i^{103} \) | III. | \(i\) |
| D. | \( i^{92} \) | IV. | \(-1\) |
Choose the correct answer from the options given below:
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to: