Step 1: Compute \( \vec{a} \times \vec{b} \) The given vectors are: \[ \vec{a} = 2\hat{i} + 7\hat{j} - \hat{k}, \quad \vec{b} = 3\hat{i} + 5\hat{k}, \quad \vec{c} = \hat{i} - \hat{j} + 2\hat{k} \] The cross product \( \vec{a} \times \vec{b} \) is: \[ \vec{a} \times \vec{b} = \left| \begin{matrix} \hat{i} & \hat{j} & \hat{k} 2 & 7 & -1 3 & 0 & 5 \end{matrix} \right| = \hat{i}(7 \times 5 - (-1) \times 0) - \hat{j}(2 \times 5 - (-1) \times 3) + \hat{k}(2 \times 0 - 7 \times 3) \] \[ = \hat{i}(35) - \hat{j}(10 + 3) + \hat{k}(-21) = 35\hat{i} - 13\hat{j} - 21\hat{k} \] Thus, \[ \vec{a} \times \vec{b} = 35\hat{i} - 13\hat{j} - 21\hat{k} \]
Step 2: Solve for \( \lambda \)
We are given that \( \vec{c} \cdot \vec{d} = 12 \), and \( \vec{d} = \lambda (\vec{a} \times \vec{b}) \), so we substitute: \[ \vec{c} \cdot \vec{d} = (\hat{i} - \hat{j} + 2\hat{k}) \cdot \lambda (35\hat{i} - 13\hat{j} - 21\hat{k}) = 12 \] \[ \lambda (35 - (-13) + 2 \times (-21)) = 12 \] \[ \lambda (35 + 13 - 42) = 12 \] \[ \lambda (6) = 12 \] \[ \lambda = 2 \] Thus, \( \vec{d} = 2 (35\hat{i} - 13\hat{j} - 21\hat{k}) = 70\hat{i} - 26\hat{j} - 42\hat{k} \).
Step 3: Compute \( (\hat{i} + \hat{j} - \hat{k}) \cdot (\vec{c} \times \vec{d}) \)
\ Next, we compute \( \vec{c} \times \vec{d} \): \[ \vec{c} \times \vec{d} = \left| \begin{matrix} \hat{i} & \hat{j} & \hat{k} 1 & -1 & 2 70 & -26 & -42 \end{matrix} \right| \] \[ = \hat{i}((-1)(-42) - 2(-26)) - \hat{j}(1(-42) - 2(70)) + \hat{k}(1(-26) - (-1)(70)) \] \[ = \hat{i}(42 + 52) - \hat{j}(-42 - 140) + \hat{k}(-26 + 70) \] \[ = \hat{i}(94) - \hat{j}(-182) + \hat{k}(44) \] \[ = 94\hat{i} + 182\hat{j} + 44\hat{k} \] Finally, compute the dot product: \[ (\hat{i} + \hat{j} - \hat{k}) \cdot (94\hat{i} + 182\hat{j} + 44\hat{k}) = 1 \times 94 + 1 \times 182 - 1 \times 44 \] \[ = 94 + 182 - 44 = 232 \] Thus, the required value is \( \boxed{44} \).
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to