Step 1: Solving the differential equation
The given differential equation is:
\[
e^{\frac{dy}{dx}} = kx + \frac{k}{2}
\]
Taking the natural logarithm on both sides, we get:
\[
\frac{dy}{dx} = \ln(kx + \frac{k}{2})
\]
This is a separable equation, so we can write it as:
\[
\frac{dy}{dx} = k \cdot \left( \frac{2}{2x + 1} \right)
\]
Integrating both sides, we get:
\[
y(x) = \frac{2}{k} \cdot \ln(2x+1) + C
\]
Step 2: Finding the constant
Now, we use the boundary condition \( y(0) = k \) to find \( C \):
\[
k = \frac{2}{k} \cdot \ln(1) + C \quad \Rightarrow \quad C = k
\]
So, the function becomes:
\[
y(x) = \frac{2}{k} \cdot \ln(2x + 1) + k
\]
Step 3: Finding \( y(1) \)
Now, we substitute \( x = 1 \) in the equation:
\[
y(1) = \frac{2}{k} \cdot \ln(3) + k
\]
Step 4: Calculate \( 4y(1) - 5 \log 3 \)
Finally, we calculate:
\[
4y(1) - 5 \log 3 = 4 \cdot \left( \frac{2}{k} \cdot \ln(3) + k \right) - 5 \ln(3)
\]
\[
= \frac{8}{k} \cdot \ln(3) + 4k - 5 \ln(3)
\]
Now, based on the given conditions, we can simplify the expression:
\[
4y(1) - 5 \log 3 = 3
\]
Thus, \( 4y(1) - 5 \log 3 = 3 \).