The given terms are \( \frac{a - 2d}{4}, \frac{a - d}{2}, a, 2(a + d), 4(a + 2d) \).
Given that \( a = 2 \), we substitute this into the terms: \[ \frac{a - 2d}{4}, \frac{a - d}{2}, a, 2(a + d), 4(a + 2d) \Rightarrow \frac{2 - 2d}{4}, \frac{2 - d}{2}, 2, 2(2 + d), 4(2 + 2d) \] Now, use the given sum of the 5 terms being \( \frac{49}{2} \): \[ \left( \frac{1}{4} + \frac{1}{2} + 1 + 6 \right) \times 2 + (-1 + 2 + 8)d = \frac{49}{2} \] \[ 2 \left( \frac{3}{4} + 7 \right) + 9d = \frac{49}{2} \] \[ 2 \times \frac{31}{4} + 9d = \frac{49}{2} \] \[ \frac{62}{4} + 9d = \frac{49}{2} \] Now solve for \( d \): \[ 9d = \frac{49}{2} - \frac{62}{4} = \frac{98}{4} - \frac{62}{4} = \frac{36}{4} = 9 \] Thus, \( d = 1 \). Now, substitute \( d = 1 \) into \( a_4 = 4(a + 2d) \): \[ a_4 = 4(2 + 2 \times 1) = 4(2 + 2) = 4 \times 4 = 16 \] Thus, the value of \( a_4 \) is \( 16 \).
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to: