We are given the equation of a circle in the complex plane:
\[ |z - \alpha|^2 + |z - \beta|^2 = 2\lambda. \]This represents a circle with center at the midpoint of \( \alpha \) and \( \beta \), and radius \( \sqrt{\lambda - 1} \).
The standard form of such a circle is:
\[ R^2 = \frac{|\alpha - \beta|^2}{4} + (\lambda - 1). \]Since the given radius is \( \sqrt{\lambda - 1} \), we equate:
\[ \lambda - 1 = \frac{|\alpha - \beta|^2}{4} + (\lambda - 1). \]Canceling \( \lambda - 1 \) on both sides:
\[ \frac{|\alpha - \beta|^2}{4} = 1. \]Solving for \( |\alpha - \beta| \):
\[ |\alpha - \beta| = 2. \]Final Answer: \( |\alpha - \beta| = 2 \).