A body of mass \( (5 \pm 0.5) \, \text{kg} \) is moving with a velocity of \( (20 \pm 0.4) \, \text{m/s} \). Its kinetic energy will be:
The equivalent resistance between \( A \) and \( B \) as shown in the figure is:
An engine operating between the boiling and freezing points of water will have A. efficiency more than 27% B. efficiency less than the efficiency a Carnot engine operating between the same two temperatures. C. efficiency equal to 27% D. efficiency less than 27%
Let $\vec{a}$ and $\vec{b}$ be two vectors such that $|\vec{a}|=\sqrt{14},|\vec{b}|=\sqrt{6}$ and $|\vec{a} \times \vec{b}|=\sqrt{48}$ Then $(\vec{a} \cdot \vec{b})^2$ is equal to
If 5f(x) + 4f (\(\frac{1}{x}\)) = \(\frac{1}{x}\)+ 3, then \(18\int_{1}^{2}\) f(x)dx is: