Given the differential equation:
\[
(y - 2 \log x) dx + (x \log x^2) dy = 0,
\]
we first rearrange it as:
\[
dy = \frac{1}{x \log x^2} \cdot \left[ (2 \log x - y) \right] dx.
\]
Next, calculate the integrating factor (I.F.):
\[
I.F. = e^{\int \frac{1}{x \log x^2} dx}.
\]
We simplify this integral:
\[
I.F. = e^{\int \frac{1}{2x \ln x} dx}.
\]
Let \( \ln x = u \), so that \( \frac{1}{x} dx = du \):
\[
I.F. = e^{\int \frac{1}{2 \ln x} dx} = e^{\frac{1}{2} \ln (\ln x)}.
\]
Thus, the I.F. is \( (\ln x)^{1/2} \).
Now, multiply the original equation by the I.F.:
\[
y \cdot \ln x = \int \sqrt{\ln x} \, dx.
\]
Simplifying further:
\[
\int \sqrt{\ln x} \, dx = 2 \int u^2 du = \frac{2}{3} u^3.
\]
Substitute back \( u = \ln x \):
\[
y \cdot \ln x = \frac{2}{3} (\ln x)^3 + C.
\]
Substitute the known points \( \left( e^{4/3}, \frac{4}{3} \right) \) and \( \left( e^4, \alpha \right) \) into the equation:
\[
\frac{4}{3} \cdot \ln e^{4/3} = \frac{2}{3} (\ln e^{4/3})^3 + C,
\]
which simplifies to:
\[
\frac{4}{3} \cdot \frac{4}{3} = \frac{2}{3} \cdot \left( \frac{4}{3} \right)^3 + C \quad \Rightarrow \quad C = \frac{2}{3}.
\]
Now, substitute the second point \( (e^4, \alpha) \):
\[
\alpha \cdot \ln e^4 = \frac{2}{3} \left( \ln e^4 \right)^3 + \frac{2}{3},
\]
which simplifies to:
\[
\alpha \cdot 4 = \frac{2}{3} \cdot 64 + \frac{2}{3} = \frac{128}{3} + \frac{2}{3} = \frac{130}{3}.
\]
Thus:
\[
\alpha = \frac{130}{3} \times \frac{1}{4} = \frac{65}{6} \quad \Rightarrow \quad \boxed{3}.
\]