Step 1: Use the distance formula.
- Distance of a point \((x_1, y_1, z_1)\) from a plane \(ax + by + cz + d = 0\) is: \[ d = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}. \] Step 2: Solve for \(\lambda\).
- Equate distances of \((1, \lambda, \frac{1}{2})\) and \((-2, 0, 1)\): \[ \left|\frac{3\lambda + 6}{7}\right| = \frac{3}{7}. \] - Solving gives \(\lambda_1 = 3, \lambda_2 = 2\).
Step 3: Find the distance to the line.
- Point is \((-1, 2, 3)\), and line is parameterized. Use the distance formula between a point and a line.
Final Answer: The distance is \(9\).
For \(a, b \in \mathbb{Z}\) and \(|a - b| \leq 10\), let the angle between the plane \(P: ax + y - z = b\) and the line \(L: x - 1 = a - y = z + 1\) be \(\cos^{-1}\left(\frac{1}{3}\right)\). If the distance of the point \((6, -6, 4)\) from the plane \(P\) is \(3\sqrt{6}\), then \(a^4 + b^2\) is equal to:
Let P₁ be the plane 3x-y-7z = 11 and P₂ be the plane passing through the points (2,-1,0), (2,0,-1), and (5,1,1). If the foot of the perpendicular drawn from the point (7,4,-1) on the line of intersection of the planes P₁ and P₂ is (α, β, γ), then a + ẞ+ y is equal to
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).