\( V_{\text{rms}} \text{(mono)} > V_{\text{rms}} \text{(dia)} > V_{\text{rms}} \text{(poly)} \)
\( V_{\text{rms}} \text{(dia)} < V_{\text{rms}} \text{(poly)} < V_{\text{rms}} \text{(mono)} \)
\( V_{\text{rms}} \text{(mono)} < V_{\text{rms}} \text{(dia)} < V_{\text{rms}} \text{(poly)} \)
\( V_{\text{rms}} \text{(mono)} = V_{\text{rms}} \text{(dia)} = V_{\text{rms}} \text{(poly)} \)
The root mean square speed \( V_{\text{rms}} \) is given by: \[ V_{\text{rms}} = \sqrt{\frac{3RT}{m}} \] Since the gases are at the same temperature and pressure, the root mean square speed depends on the molar mass \( m \). For neon (monoatomic), chlorine (diatomic), and uranium hexafluoride (polyatomic), the molar mass increases in the order: \[ V_{\text{rms}} \text{(mono)} > V_{\text{rms}} \text{(dia)} > V_{\text{rms}} \text{(poly)} \] Thus, the correct answer is \( V_{\text{rms}} \text{(mono)} > V_{\text{rms}} \text{(dia)} > V_{\text{rms}} \text{(poly)} \).
The motion of a particle in the XY plane is given by \( x(t) = 25 + 6t^2 \, \text{m} \); \( y(t) = -50 - 20t + 8t^2 \, \text{m} \). The magnitude of the initial velocity of the particle, \( v_0 \), is given by:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: