\( V_{\text{rms}} \text{(mono)} > V_{\text{rms}} \text{(dia)} > V_{\text{rms}} \text{(poly)} \)
\( V_{\text{rms}} \text{(dia)} < V_{\text{rms}} \text{(poly)} < V_{\text{rms}} \text{(mono)} \)
\( V_{\text{rms}} \text{(mono)} < V_{\text{rms}} \text{(dia)} < V_{\text{rms}} \text{(poly)} \)
\( V_{\text{rms}} \text{(mono)} = V_{\text{rms}} \text{(dia)} = V_{\text{rms}} \text{(poly)} \)
The root mean square speed \( V_{\text{rms}} \) is given by: \[ V_{\text{rms}} = \sqrt{\frac{3RT}{m}} \] Since the gases are at the same temperature and pressure, the root mean square speed depends on the molar mass \( m \). For neon (monoatomic), chlorine (diatomic), and uranium hexafluoride (polyatomic), the molar mass increases in the order: \[ V_{\text{rms}} \text{(mono)} > V_{\text{rms}} \text{(dia)} > V_{\text{rms}} \text{(poly)} \] Thus, the correct answer is \( V_{\text{rms}} \text{(mono)} > V_{\text{rms}} \text{(dia)} > V_{\text{rms}} \text{(poly)} \).
0.01 mole of an organic compound (X) containing 10% hydrogen, on complete combustion, produced 0.9 g H₂O. Molar mass of (X) is ___________g mol\(^{-1}\).
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to: