\( V_{\text{rms}} \text{(mono)} > V_{\text{rms}} \text{(dia)} > V_{\text{rms}} \text{(poly)} \)
\( V_{\text{rms}} \text{(dia)} < V_{\text{rms}} \text{(poly)} < V_{\text{rms}} \text{(mono)} \)
\( V_{\text{rms}} \text{(mono)} < V_{\text{rms}} \text{(dia)} < V_{\text{rms}} \text{(poly)} \)
\( V_{\text{rms}} \text{(mono)} = V_{\text{rms}} \text{(dia)} = V_{\text{rms}} \text{(poly)} \)
The root mean square speed \( V_{\text{rms}} \) is given by: \[ V_{\text{rms}} = \sqrt{\frac{3RT}{m}} \] Since the gases are at the same temperature and pressure, the root mean square speed depends on the molar mass \( m \). For neon (monoatomic), chlorine (diatomic), and uranium hexafluoride (polyatomic), the molar mass increases in the order: \[ V_{\text{rms}} \text{(mono)} > V_{\text{rms}} \text{(dia)} > V_{\text{rms}} \text{(poly)} \] Thus, the correct answer is \( V_{\text{rms}} \text{(mono)} > V_{\text{rms}} \text{(dia)} > V_{\text{rms}} \text{(poly)} \).
The motion of a particle in the XY plane is given by \( x(t) = 25 + 6t^2 \, \text{m} \); \( y(t) = -50 - 20t + 8t^2 \, \text{m} \). The magnitude of the initial velocity of the particle, \( v_0 \), is given by:
Consider a rope fixed at both ends under tension so that it is horizontal (i.e. assume the rope is along x-axis, with gravity acting along z-axis). Now the right end is continually oscillated at high frequency n (say n=100 Hz) horizontally and in a direction along the rope; amplitude of oscillation is negligible. The oscillation travells along the rope and is reflected at the left end.
Let the total length of rope be l, total mass be m and the acceleration due to gravity be g.
After initial phase (say a mintue or so), the rope has __(BLANK-1)__ wave, which is __(BLANK-2)__ in nature. It results from superposition of left travelling and right travelling __(BLANK-3)__ waves. This resulting wave has a frequency __ (BLANK-4)_ that of oscillation frequency nu. Simple dimensional analysis indicates that the frequency of can be of the form: ___(BLANK-5)__ .
Consider the following molecules:
The order of rate of hydrolysis is: