\( V_{\text{rms}} \text{(mono)} > V_{\text{rms}} \text{(dia)} > V_{\text{rms}} \text{(poly)} \)
\( V_{\text{rms}} \text{(dia)} < V_{\text{rms}} \text{(poly)} < V_{\text{rms}} \text{(mono)} \)
\( V_{\text{rms}} \text{(mono)} < V_{\text{rms}} \text{(dia)} < V_{\text{rms}} \text{(poly)} \)
\( V_{\text{rms}} \text{(mono)} = V_{\text{rms}} \text{(dia)} = V_{\text{rms}} \text{(poly)} \)
The root mean square speed \( V_{\text{rms}} \) is given by: \[ V_{\text{rms}} = \sqrt{\frac{3RT}{m}} \] Since the gases are at the same temperature and pressure, the root mean square speed depends on the molar mass \( m \). For neon (monoatomic), chlorine (diatomic), and uranium hexafluoride (polyatomic), the molar mass increases in the order: \[ V_{\text{rms}} \text{(mono)} > V_{\text{rms}} \text{(dia)} > V_{\text{rms}} \text{(poly)} \] Thus, the correct answer is \( V_{\text{rms}} \text{(mono)} > V_{\text{rms}} \text{(dia)} > V_{\text{rms}} \text{(poly)} \).
