Given:
\[ ax^2 + bx + 1 = a(x - \alpha)(x - \beta) \quad \Rightarrow \quad \alpha \beta = \frac{1}{a} \] \[ x^2 + bx + a = a(1 - \alpha x)(1 - \beta x) \]
Now, we need to evaluate the limit: \[ \lim_{x \to \frac{1}{\alpha}} \frac{1 - \cos(x^2 + bx + a)}{2(1 - \alpha x)^2} \]
Rewriting the limit expression: \[ = \lim_{x \to \frac{1}{2}} \frac{1 - \cos(a(1 - \alpha x)(1 - \beta x))}{2a^2(1 - \beta x)^2} \]
Simplifying: \[ = \left[\frac{1}{2} \cdot \frac{1}{2} a^2 \left( \frac{1 - \beta}{\alpha} \right)^2 \right]^{\frac{1}{2}} \]
Simplifying further: \[ = \frac{1}{2} \cdot \frac{1}{2 \alpha \beta} \left( \frac{1 - \beta}{\alpha} \right) = \frac{1}{2} \left( \frac{1}{\alpha \beta} - \frac{1}{\alpha^2} \right) \]
Therefore, we get: \[ k = 2\alpha \]
So, the final answer is \( k = 2\alpha \).
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
If \( f(x) \) is defined as follows:
$$ f(x) = \begin{cases} 4, & \text{if } -\infty < x < -\sqrt{5}, \\ x^2 - 1, & \text{if } -\sqrt{5} \leq x \leq \sqrt{5}, \\ 4, & \text{if } \sqrt{5} \leq x < \infty. \end{cases} $$ If \( k \) is the number of points where \( f(x) \) is not differentiable, then \( k - 2 = \)